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Comprehensive analysis revealed 
the immunoinflammatory targets 
of rheumatoid arthritis based on intestinal flora, 
miRNA, transcription factors, and RNA-binding 
proteins databases, GSEA and GSVA pathway 
observations, and immunoinfiltration typing
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Abstract 

Objective Rheumatoid arthritis (RA) is a chronic inflammatory arthritis. This study aimed to identify potential bio-
markers and possible pathogenesis of RA using various bioinformatics analysis tools.

Methods The GMrepo database provided a visual representation of the analysis of intestinal flora. We selected 
the GSE55235 and GSE55457 datasets from the Gene Expression Omnibus database to identify differentially expressed 
genes (DEGs) separately. With the intersection of these DEGs with the target genes associated with RA found 
in the GeneCards database, we obtained the DEGs targeted by RA (DERATGs). Subsequently, Disease Ontology, Gene 
Ontology, and the Kyoto Encyclopedia of Genes and Genomes were used to analyze DERATGs functionally. Gene 
Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were performed on the data from the gene 
expression matrix. Additionally, the protein-protein interaction network, transcription factor (TF)-targets, target-drug, 
microRNA (miRNA)-mRNA networks, and RNA-binding proteins (RBPs)-DERATGs correlation analyses were built. The 
CIBERSORT was used to evaluate the inflammatory immune state. The single-sample GSEA (ssGSEA) algorithm and dif-
ferential analysis of DERATGs were used among the infiltration degree subtypes.

Results There were some correlations between the abundance of gut flora and the prevalence of RA. A total of 54 
DERATGs were identified, mainly related to immune and inflammatory responses and immunodeficiency diseases. 
Through GSEA and GSVA analysis, we found pathway alterations related to metabolic regulations, autoimmune 
diseases, and immunodeficiency-related disorders. We obtained 20 hub genes and 2 subnetworks. Additionally, we 
found that 39 TFs, 174 drugs, 2310 miRNAs, and several RBPs were related to DERATGs. Mast, plasma, and naive B cells 
differed during immune infiltration. We discovered DERATGs’ differences among subtypes using the ssGSEA algorithm 
and subtype grouping.

Conclusions The findings of this study could help with RA diagnosis, prognosis, and targeted molecular treatment.

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Hereditas

*Correspondence:
Yue Wang
wangyue@njucm.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41065-024-00310-6&domain=pdf


Page 2 of 22Guan et al. Hereditas           (2024) 161:6 

Introduction
A systemic autoimmune disease called rheumatoid 
arthritis (RA) is characterized by chronic inflammation 
that can damage joints and extra-articular organs [1]. It 
deteriorates intermittently, and without proper therapy, 
the symptoms worsen over time until the joints are 
irreparably damaged, leading to additional physical and 
psychological issues [2]. Therefore, managing and pre-
venting RA requires early identification, diagnosis, and 
management. Some studies have shown that successful 
early intervention can significantly lower the financial 
burden of RA [3, 4]. However, the early onset of RA is 
typically misleading and challenging to identify at first 
[5]. Rheumatoid factors, anti-citrullinated protein anti-
bodies (ACPAs), erythrocyte sedimentation rate, and 
C-reactive protein are the only four biomarkers cur-
rently used to identify RA, and each has some limita-
tions [6]. Conventional, biological, and novel abiotic 
disease-modifying antirheumatic drugs are also rec-
ognized treatment options. A composite score is also 
used to quantify disease activity. While most patients 
respond to the available treatments and experience 
remission, many do not or are resistant [7]. Therefore, 
it is crucial to thoroughly comprehend the evolving 
mechanism of RA, search for novel signs that might be 
used for clinical diagnosis or identification of RA con-
ditions, and design more efficient medication treatment 
targets. Based on the issues mentioned above and their 
significance, we suggest the following scientific ques-
tions: Several mechanisms can be identified and diag-
nosed in RA, and some genetic characteristics could 
serve as new targets for clinical treatment with current 
drugs.

We used various bioinformatics analytical methods 
to examine biomarkers and the inflammatory status 
of RA, including R packages from Bioconductor; the 
databases Gene Expression Omnibus (GEO), GMrepo, 
GeneCards, STRING, PharmGKB, DrugCentral, Tar-
getScan, RNA-Binding Protein DataBase (RBPDB); 
the Cytoscape software; and the CIBERSORT website. 
This study provided a comprehensive reference for 
the current RA treatment conundrum by thoroughly 
explaining every aspect of the pathological molecular 
mechanism of RA and thoroughly analyzing the drug-
gable targets that can be used for clinical diagnosis and 
treatment based on the mined key gene targets. Fig-
ure  1 depicts the workflow of the current study. Fig-
ure 2 summarizes the main findings of this study.

Materials and methods
The intestinal flora analysis
The GMrepo database (https:// gmrepo. human gut. info/ 
home) was used to retrieve relevant intestinal micro-
biotas of RA [8]. A correlation map was constructed 
between the relative abundance of gut microbiota and the 
prevalence of RA. A species co-occurrence network map 
was constructed by analyzing the relationships between 
species or genera of gut microbiota in patients with RA.

Search strategy for GEO datasets
The following keywords were used to systematically retrieve 
127 datasets from the GEO database (https:// www. ncbi. nlm. 
nih. gov/ geo/) ((((rheumatoid arthritis[MeSH Terms]) OR 
rheumatoid arthritis) AND human[Organism]) AND Expres-
sion profiling by array[Filter]) AND (“2012/01/01”[Publi-
cation Date]: “2022/01/01”[Publication Date]). Exclusion 
criteria: (1) Excluded those with a small sample size (sample 
size < 20), (2) Excluded those with irrelevant datasets (no 
rheumatoid arthritis), (3) Excluded blood samples and/or cell 
samples, (4) Excluded those with significant interference from 
the drug, vaccine, age, environmental, psychological, regional 
genetic, or epidemiological factors, (5) Lack of normal sam-
ples, and (6) Excluded those with unbalanced sample sizes 
(listed in Fig. 1).

Data download and preprocessing
The GEO database (https:// www. ncbi. nlm. nih. gov/ geo/) 
was used to download microarray datasets GSE55235 [9] 
and GSE55457 [9] using the R package (GEOquery) [10]. 
Additionally, all dataset samples were generated from 
Homo sapiens using the GPL96 [HG-U133A] Affymetrix 
Human Genome U133A Array platform. The GSE55235 
dataset contained 10 samples from patients with RA 
and 10 samples from healthy volunteers. In contrast, the 
GSE55457 dataset contained 13 samples from patients 
with RA and 10 samples from healthy volunteers, which 
were used in this study. RMA algorithm from the Affy 
package in R was used to normalize the data [11]. With 
the RNASeqSampleSize package, statistical power analy-
sis of the data is done [12].

Differentially Expressed Genes (DEGs) screening 
and functional analysis
The DEGs for the two datasets, GSE55235 and GSE55457, 
were identified using limma [13]. The DEGs were then 
displayed using the R program as Volcano plots and 
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Heat maps using the ggplot2 and pheatmap packages, 
respectively. | log2 of the Fold Change (log2FC)|> 1 and 
adjusted P-value < 0.05 were used to recruit DEGs. The 
GeneCards database (http:// www. genec ards. org/) was 
used to find the RA target genes (RATGs) [14] by search-
ing the keyword “rheumatoid arthritis.” Next, the DEGs 
targeted by RA (DERATGs) were filtered by overlap-
ping the DEGs and RATGs using a Venn diagram. Sub-
sequently, the clusterProfiler package [15] was used 
to handle Gene Ontology (GO) function, and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichments on DERATGs and Disease Ontology (DO) 
enrichments were performed for DERATGs using the 
DOSE package [16]. Adjusted P-value < 0.05 was con-
sidered statistically different. Meanwhile, the Gene Set 
Enrichment Analysis (GSEA) was performed on all RA 
genes (previously ranked based on their log2FC between 
analyzed groups) using the clusterProfiler package. It was 
thought that the enrichment was significant if the nomi-
nal false discovery rate (FDR) < 0.25 and P-value < 0.05 by 
referencing the “c2.cp.kegg.v7.5.1.symbols.gmt” gene set. 

Utilizing the gene set variation analysis (GSVA) package 
[17], RA gene expression matrix data were subjected to 
GSVA. The differential pathways were filtered according 
to adjusted P-value < 0.05 and |log2FC|> 0.263.

Construction of the Protein–Protein Interaction (PPI) 
network
The PPI network of the DERATGs was analyzed using 
the interaction relation in the database STRING (https:// 
string- db. org/) [18]. Network node attributes were cal-
culated using NetworkAnalyzer in Cytoscape [19]. 
Cytoscape’s cytoHubba plugin [20] predicted important 
nodes (or hub proteins). The subnetworks were extracted 
from the whole PPI network using the MCODE [20].

Construction of DERATGs related networks
Transcription factor (TF)-target relationships data was 
obtained from the TRRUST database (https:// www. 
grnpe dia. org/ trrust/) [21]. Meanwhile, the Cytoscape 
software also showed its relational network. The data-
base PharmGKB (https:// www. pharm gkb. org/) [22] and 

Fig. 1 Flowchart of the analytical process
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the database DrugCentral (https:// drugc entral. org/) 
[23] forecasted the association of interactions between 
DERATGs and medicinal compounds. The microRNA 
(miRNA)-mRNA regulatory networks were constructed 
using the TargetScan database (http:// www. targe tscan. 
org/ vert_ 71/) [24] to predict the potentially related 
miRNA of DERATGs. The database RBPDB (http:// 
rbpdb. ccbr. utoro nto. ca/) was used to predict the RNA-
binding proteins of DERATGs [25].

Analysis of immune cell infiltration
CIBERSORT deconvolves the transcriptome expression 
matrix to determine the make-up and number of immune 
cells within a mixed cell population using linear support 
vector regression [26]. We entered the gene expression 
matrix data into CIBERSORT, filtered samples with a 
P-value < 0.05, and created the immune cell infiltration 
matrix. The ggheatmap package generated heat maps 
depicting the 22 immune cells during each sample. Box-
plots were created using the ggplot2 and ggpubr pack-
ages to investigate differences in immune infiltrating cells 
between groups, with P < 0.05 as the screening standard.

Subgroup evaluation
Twenty-eight RA samples were given enrichment scores 
using single-sample GSEA (ssGSEA) [27]. Following that, 
depending on immune infiltrating cell expression, we cat-
egorized RA into two subtypes (Cluster1 and Cluster2). 

We investigated the DEGs of DERATGs between these 
subtypes in the GSE55235 and the GSE55457 datasets.

Results
Statistical analyses of the intestinal microbiota
A correlation map between the abundance of gut micro-
biota and the prevalence of RA was created using the 
GMrepo database (Fig.  3A). The percentage of samples 
that contained species/genera > 0.01% abundance thresh-
old was counted, and the mean/median relative abun-
dance of species in all RA samples was also summarized. 
The species co-occurrence network diagram (Fig.  3B) 
was constructed, with nodes representing species or gen-
era co-occurring with other species or genera in this RA 
sample. The number of connected network nodes affects 
the size, and the width of the lines (Pearson’s correlation) 
represents relationships between species or genera char-
acterized by co-occurrence.

Data selection and DERATGs screening
According to the GEO data platform, the analysis data 
were summarized and sorted (Table  1). Following data 
comparison, it was determined that the sample sizes for 
the RA and the normal groups were roughly balanced, 
and an examination of the statistical power of the sample 
sizes of the two data sets was conducted (Table 1), laying 
the groundwork for further analysis. The GSE55235 data-
set’s gene expression matrix was initially standardized and 

Fig. 2 Main discovery mechanism diagram
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processed. As shown in the Volcano plot (Fig. 4A) created 
using R software after data preprocessing, the gene expres-
sion matrix yielded 296 upregulated and 248 downregu-
lated genes. The top 10 genes with the most significant 

differences were identified. Subsequently, we also showed 
the heat map of DEGs for the GSE55235 dataset (Fig. 4B). 
Following standardization, the GSE55457 dataset was 
compared to the normal samples. Differential analysis was 

Fig. 3 Data on intestinal microbiota in rheumatoid arthritis. A Prevalence abundance map analysis. B Species co-occurrence network diagram. 
Green indicates positive, and red indicates negative correlations
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conducted to obtain 114 genes that were upregulated and 
51 genes that were downregulated. The Volcanic plot was 
shown (Fig. 4C). Meanwhile, the heat map was also used 
to show the expression between samples (Fig. 4D). Gen-
eCards retrieved the disease targets of RA (Supplement 
Spreadsheet S1). Differential genes of the two datasets and 
the target genes of the GeneCards database intersected, 
and 54 DERATGs were finally screened out (Fig. 4E).

Table 1 Data information summary

GEO accession Platforms Sample Statistical Power

GSE55235 GPL96 Normal 10 0.8466
RA 10

GSE55457 GPL96 Normal 10 0.9212
RA 13

Fig. 4 Differentially expressed genes targeted by RA (DERATGs) screening. A Volcano plot of GSE55235. Red signifies upregulated DEGs, green 
signifies downregulated DEGs, and blue signifies no DEGs. B Heat map of GSE55235. Blue represents the normal group, and red represents 
the rheumatoid arthritis (RA) group. C Volcano plot of GSE55457. Red indicates upregulated DEGs, green indicates downregulated DEGs, and blue 
indicates no DEGs. D Heat map of GSE55457. Blue represents the normal group, and red represents the RA group. E Comprehensive screening 
of DERATGs by DEGs of the two datasets and GeneCards
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GO, KEGG, and DO enrichment analysis
Then, functional enrichment analyses for GO (Table  2), 
KEGG (Table 3), and DO (Table 4) were carried out on 
DERATGs. The GO results confirmed that DERATGs 
were primarily linked to the cytokine-mediated signaling 
pathway, clathrin-coated endocytic vesicle membrane, G 
protein-coupled receptor binding, and other biological 
phenomena (Fig. 5A-C). The KEGG results showed that 
the tumor necrosis factor signaling pathway, chemokine 
signaling pathway, osteoclast differentiation, and other 
pathways had higher DERATG concentrations than 
other pathways (Fig.  5D-F). According to DO findings, 
DERATGs were particularly enriched in myeloma, bone 
marrow cancer, multiple myeloma, and other diseases 
(Fig. 5G-I).

GSEA and GSVA analysis
Our reference gene set was “c2.cp.kegg.v7.5.1.symbols.
gmt.” The two datasets were subjected to a GSEA 
enrichment analysis to identify significant enrich-
ment according to the FDR criteria < 0.25 and P < 0.05. 
(Table  5). The GSEA enrichment analysis revealed 
that the DERATGs in the GSE55235 dataset exist 
and are also significantly enriched in the upregulated 
pathways, such as an intestinal immune network for 
immunoglobulin (Ig)A production, allograft rejection, 

autoimmune thyroid disease, etc. (Fig.  6A), and are 
also significantly enriched in the downregulated path-
ways, such as ribosome biogenesis in eukaryotes, 
basal cell carcinoma, mitophagy-animal, and so on 
(Fig.  6B). Similarly, the GSEA enrichment analysis on 
the GSE55457 dataset (Fig.  6D, E) revealed very high 
similarity with the GSE55235 dataset, demonstrating 
the efficacy of DERATGs and enabling further analy-
sis. GSVA enrichment analysis was performed on the 
GSE55235 and the GSE55457 datasets, and distinct 
pathways were displayed (Table  6). The differential 

Table 2 GO enrichment summary

Ontology ID Description p.adjust Count

BP GO:0019221 cytokine-mediated signaling pathway  < 0.001 15

BP GO:0070098 chemokine-mediated signaling pathway  < 0.001 9

BP GO:1990868 response to chemokine  < 0.001 9

BP GO:1990869 cellular response to chemokine  < 0.001 9

BP GO:1903131 mononuclear cell differentiation  < 0.001 14

BP GO:0030098 lymphocyte differentiation  < 0.001 13

BP GO:0030595 leukocyte chemotaxis  < 0.001 10

BP GO:0060326 cell chemotaxis  < 0.001 11

BP GO:0006959 humoral immune response  < 0.001 11

BP GO:0042113 B cell activation  < 0.001 11

CC GO:0009897 external side of plasma membrane  < 0.001 15

CC GO:0030669 clathrin-coated endocytic vesicle membrane 0.043 3

MF GO:0042379 chemokine receptor binding  < 0.001 7

MF GO:0008009 chemokine activity  < 0.001 6

MF GO:0048020 CCR chemokine receptor binding  < 0.001 5

MF GO:0001664 G protein-coupled receptor binding  < 0.001 8

MF GO:0140375 immune receptor activity  < 0.001 6

MF GO:0005125 cytokine activity  < 0.001 7

MF GO:0004896 cytokine receptor activity  < 0.001 5

MF GO:0005126 cytokine receptor binding  < 0.001 7

MF GO:0045236 CXCR chemokine receptor binding  < 0.001 3

MF GO:0016493 C–C chemokine receptor activity  < 0.001 3

Table 3 KEGG enrichment summary

ID Description p.adjust qvalue Count

hsa04061 Viral protein interaction 
with cytokine and cytokine 
receptor

 < 0.001  < 0.001 10

hsa04060 Cytokine-cytokine receptor 
interaction

 < 0.001  < 0.001 14

hsa04062 Chemokine signaling pathway  < 0.001  < 0.001 10

hsa05340 Primary immunodeficiency 0.001 0.001 4

hsa04640 Hematopoietic cell lineage 0.004 0.003 5

hsa04668 TNF signaling pathway 0.006 0.005 5

hsa04380 Osteoclast differentiation 0.01 0.008 5
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Table 4 DO enrichment summary

ID Description p.adjust qvalue Count

DOID:0070004 myeloma  < 0.001  < 0.001 14

DOID:4960 bone marrow cancer  < 0.001  < 0.001 14

DOID:9538 multiple myeloma  < 0.001  < 0.001 12

DOID:526 Human immunodeficiency virus infectious disease  < 0.001  < 0.001 10

DOID:0050338 primary bacterial infectious disease  < 0.001  < 0.001 11

DOID:2237 hepatitis  < 0.001  < 0.001 14

DOID:104 bacterial infectious disease  < 0.001  < 0.001 11

DOID:1036 chronic leukemia  < 0.001  < 0.001 10

DOID:2789 parasitic protozoa infectious disease  < 0.001  < 0.001 8

DOID:612 primary immunodeficiency disease  < 0.001  < 0.001 9

Fig. 5 Differentially expressed genes targeted by RA (DERATGs) functional correlation evaluation. A DERATGs’ Gene Ontology (GO) biological 
function enrichment evaluation. The X-axis represents the enrichment of DERATG in GO entries, and the color of the dots represents the adjusted 
P-value: redder is displayed when the adjusted P-value is lower, and bluer is displayed when the adjusted P-value is higher. The size of the dots 
serves as a proxy for the number of enriched genes. B, C Exhibition of DERATGs GO biological function enrichment. D DERATGs’ KEGG pathway 
enrichment study. The size of the dots indicates the number of enriched genes. E, F DERATGs KEGG biological function enrichment exhibition. G 
DERATGs’ enrichment study using Disease Ontology (DO). The x-axis represents the percentage of DERATGs enriched in the disease team, the y-axis 
displays the names of the enrichment diseases, and the dot color indicates the adjusted P-value: a lower adjusted P-value corresponds to red color, 
and a higher adjusted P-value corresponds to blue color. The size of the dots serves as a proxy for the number of enriched genes. H, I DERATGs 
DO enrichment exhibition
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pathways in the GSE55235 dataset included autoim-
mune thyroid disease, the intestinal immune net-
work for IgA production, viral myocarditis, and 
so on (Fig.  6C). Its outcomes matched those of the 
GSE55457’s GSVA differential pathway (Fig. 6F).

Analysis of PPI using DERATGs
PPI of 54 DERATGs was assessed using the database 
STRING, and 47 DERATGs were discovered to have a 
PPI link, which was as follows: C7, ERAP2, LAP3, RAS-
GRP1, SEMA4D, SFRP1, TYMS, LAMP3, NCF1, AIM2, 

Table 5 GSEA enrichment summary

GEO accession ID Description enrichmentScore pvalue qvalues

GSE55235 hsa05310 Asthma 0.876  < 0.001  < 0.001

hsa05330 Allograft rejection 0.842  < 0.001  < 0.001

hsa05340 Primary immunodeficiency 0.841  < 0.001  < 0.001

hsa05320 Autoimmune thyroid disease 0.837  < 0.001  < 0.001

hsa04672 Intestinal immune network for IgA production 0.826  < 0.001  < 0.001

hsa05150 Staphylococcus aureus infection 0.793  < 0.001  < 0.001

hsa04940 Type I diabetes mellitus 0.773  < 0.001  < 0.001

hsa05332 Graft-versus-host disease 0.773  < 0.001  < 0.001

hsa04612 Antigen processing and presentation 0.739  < 0.001  < 0.001

hsa05322 Systemic lupus erythematosus 0.736  < 0.001  < 0.001

hsa03008 Ribosome biogenesis in eukaryotes -0.591 0.004 0.017

hsa05217 Basal cell carcinoma -0.606 0.002 0.01

hsa04137 Mitophagy—animal -0.607  < 0.001 0.006

hsa04978 Mineral absorption -0.617 0.003 0.013

hsa00830 Retinol metabolism -0.635 0.004 0.015

hsa05213 Endometrial cancer -0.64  < 0.001 0.003

hsa03040 Spliceosome -0.649  < 0.001  < 0.001

hsa04710 Circadian rhythm -0.685 0.006 0.022

hsa05216 Thyroid cancer -0.693  < 0.001 0.006

hsa00350 Tyrosine metabolism -0.769  < 0.001  < 0.001

GSE55457 hsa05340 Primary immunodeficiency 0.785  < 0.001  < 0.001

hsa05330 Allograft rejection 0.724  < 0.001  < 0.001

hsa05320 Autoimmune thyroid disease 0.683  < 0.001  < 0.001

hsa04940 Type I diabetes mellitus 0.672  < 0.001  < 0.001

hsa05332 Graft-versus-host disease 0.661  < 0.001 0.002

hsa04672 Intestinal immune network for IgA production 0.657  < 0.001  < 0.001

hsa04061 Viral protein interaction with cytokine and cytokine receptor 0.643  < 0.001  < 0.001

hsa04062 Chemokine signaling pathway 0.566  < 0.001  < 0.001

hsa04612 Antigen processing and presentation 0.563  < 0.001 0.001

hsa04650 Natural killer cell mediated cytotoxicity 0.562  < 0.001  < 0.001

hsa05412 Arrhythmogenic right ventricular cardiomyopathy -0.432 0.007 0.034

hsa04928 Parathyroid hormone synthesis, secretion and action -0.444  < 0.001 0.006

hsa05410 Hypertrophic cardiomyopathy -0.455 0.001 0.008

hsa04520 Adherens junction -0.477 0.001 0.01

hsa05031 Amphetamine addiction -0.479 0.004 0.023

hsa04923 Regulation of lipolysis in adipocytes -0.481 0.004 0.024

hsa05210 Colorectal cancer -0.488  < 0.001 0.002

hsa04350 TGF-beta signaling pathway -0.506  < 0.001 0.001

hsa04979 Cholesterol metabolism -0.541  < 0.001 0.006

hsa04977 Vitamin digestion and absorption -0.666 0.005 0.028
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HLA-DOB, IL32, MZB1, PSMB9, SLAMF8, TNFRSF17, 
GADD45B, FOSB, JUNB, KLF4, MMP1, EGR1, 
CCL13, SOCS3, IGLL5, NR4A1, CCL18, IGHV4-38-2, 
CD52, MS4A1, CD3D, EGFR, IL2RG, SDC1, GZMA, 

CCR2, CXCL13, CXCL9, CCR5, IL7R, JUN, CCR7, 
CD2, CXCL10, CD27, CCL5, and PTPRC. The num-
ber of interactions for each DERATG was visualized 
(Fig. 7A). Additionally, Cytoscape was used to display 

Fig. 6 Gene Set Enrichment Analysis and Gene Set Variation Analysis of the GSE55235 and GSE55457 datasets. A Analysis of differential genes’ 
upregulated pathways in the GSE55235 dataset. B Analysis of differential genes’ downregulated pathways in the GSE55235 dataset. C Differentially 
enriched pathways in the GSE55235 dataset. D Analysis of differential genes’ upregulated pathways in the GSE55457 dataset. E Analysis 
of differential genes’ downregulated pathways in the GSE55457 dataset. F Differentially enriched pathways in the GSE55457 dataset
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Table 6 GSVA enrichment summary

GEO accession Description logFC AveExpr P.Value adj.P.Val

GSE55235 KEGG_PRIMARY_IMMUNODEFICIENCY 0.723 0.004  < 0.001  < 0.001

KEGG_ALLOGRAFT_REJECTION 0.702 0.016  < 0.001  < 0.001

KEGG_VIRAL_MYOCARDITIS 0.492 0.011  < 0.001  < 0.001

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 0.469 0.007  < 0.001  < 0.001

KEGG_LEISHMANIA_INFECTION 0.479 -0.001  < 0.001  < 0.001

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 0.564 0.008  < 0.001  < 0.001

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 0.508 -0.004  < 0.001  < 0.001

KEGG_GRAFT_VERSUS_HOST_DISEASE 0.633 0.03  < 0.001  < 0.001

KEGG_TYPE_I_DIABETES_MELLITUS 0.528 0.014  < 0.001  < 0.001

KEGG_ASTHMA 0.549 0.032  < 0.001  < 0.001

KEGG_CELL_ADHESION_MOLECULES_CAMS 0.436 0.021  < 0.001  < 0.001

KEGG_LYSOSOME 0.488 0.029  < 0.001  < 0.001

KEGG_CHEMOKINE_SIGNALING_PATHWAY 0.322 0.014  < 0.001  < 0.001

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 0.352 0.003  < 0.001  < 0.001

KEGG_AUTOIMMUNE_THYROID_DISEASE 0.512 0.007  < 0.001  < 0.001

KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 0.345 0.009  < 0.001  < 0.001

KEGG_HEMATOPOIETIC_CELL_LINEAGE 0.318 0.012  < 0.001  < 0.001

KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY 0.328 0.008  < 0.001 0.001

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GLOBO_SERIES 0.419 0.004  < 0.001 0.001

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 0.346 0.003  < 0.001 0.001

KEGG_N_GLYCAN_BIOSYNTHESIS 0.384 0.012  < 0.001 0.002

KEGG_PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 0.343 0.028  < 0.001 0.002

KEGG_FOLATE_BIOSYNTHESIS 0.418 0.006  < 0.001 0.003

KEGG_VIBRIO_CHOLERAE_INFECTION 0.343 0.006  < 0.001 0.004

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES 0.443 0.017  < 0.001 0.004

KEGG_SULFUR_METABOLISM 0.461 0.027  < 0.001 0.005

KEGG_OTHER_GLYCAN_DEGRADATION 0.45 0.022 0.003 0.017

KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT 0.29 0.014 0.003 0.017

KEGG_ETHER_LIPID_METABOLISM 0.276 -0.009 0.004 0.02

KEGG_GLYCOSAMINOGLYCAN_DEGRADATION 0.307 0.018 0.004 0.02

KEGG_OXIDATIVE_PHOSPHORYLATION 0.338 -0.003 0.006 0.027

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES 0.272 0 0.007 0.03

KEGG_TGF_BETA_SIGNALING_PATHWAY -0.352 -0.012  < 0.001  < 0.001

KEGG_SPLICEOSOME -0.43 -0.035  < 0.001 0.001

KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 -0.281 -0.015  < 0.001 0.002

KEGG_CIRCADIAN_RHYTHM_MAMMAL -0.487 -0.043  < 0.001 0.003

KEGG_TYROSINE_METABOLISM -0.264 0.001  < 0.001 0.005

KEGG_RIBOSOME -0.365 -0.031 0.008 0.03

KEGG_PHENYLALANINE_METABOLISM -0.278 0.009 0.009 0.033
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the network (Fig. 7B). The node degree increases with 
an increase in DERATGs size. In contrast, the number 
of edge interfaces increases as line thickness increases. 
The cytoHubba tool was used to search hub nodes in 
the network, and MCC was used to determine the top 
20 genes as key gene nodes. The score increases as the 
node color becomes darker (Fig. 7C). The subnetwork 
is built using the MCODE, which is used to cluster and 
build functional modules in the network (Fig.  7D, E), 
and the construction of the subnetwork reveals the 
dense areas of potential biological functions.

Construction of TF‑targets, miRNA‑mRNA network, 
and RBP‑DERATGs correlation analysis
The TRRUST database predicted the TFs of 54 DER-
ATGs. Thirty-nine TFs were obtained, corresponding 
to 25 DERATGs. The network visualized the regula-
tory relationships (Fig.  8A). The TargetScan database 
also predicted the miRNAs of DERATGs, and 2310 
miRNAs were finally predicted to have regulatory 
relationships with 51 DERATGs. The regulatory 
relationships were analyzed by network visualiza-
tion (Fig. 8B). Finally, RBP genes were extracted from 
the RBPDB database. Correlation analysis was con-
ducted to observe the correlation between RBP genes 
and 54 DERATGs in the two datasets (GSE55235 and 
GSE55457) separately, and the results were displayed 
as heat maps (Fig. 8C, D).

Construction of interaction networks between drugs 
and DERATGs targets
By retrieving the interaction relationship between DER-
ATGs and drugs from the PharmGKB database, finally, 
we screened these drugs, adalimumab, hydroxyurea, 
platinum compounds, and so on from the 13 genes ana-
lyzed, PTPRC, KLF4, HLA-DOB, EGFR, SOCS3, CXCL10, 
CCR5, MMP1, CXCL13, FKBP5, TYMS, IL7R, and 
MS4A1 (Fig.  9A). Additionally, we looked at the inter-
action network between DERATGs and targeted drugs 
through the DrugCentral database, screening for drugs 
such as ebastine, econazole, ibrutinib, necitumumab, 
etc., that are associated with FKBP5, PSMB9, CCR5, 
MS4A1, CCR2, MMP1, TYMS, EGFR, CD2, JUN, CD52, 
TNFRSF17, NR4A1, and LAP3 (Fig. 9B).

Immune infiltration analysis
The immune cell infiltration of the RA and the normal 
group samples in the GSE55235 and the GSE55457 data-
sets were analyzed based on the CIBERSORT algorithm. 
The immune infiltration of GSE55235 was analyzed, 
and a heat map was drawn (Fig. 10A). The unexpressed 
eosinophils cells were eliminated, and only the cells that 
were expressed in the sample, such as monocytes, fol-
licular helper T cells, neutrophils, etc., were retained in 
the heat map. The image shows that plasma cells, naive 
B cells, etc., had a high infiltration level in the RA group, 
while resting dendritic cells, activated mast cells, etc., 

Table 6 (continued)

GEO accession Description logFC AveExpr P.Value adj.P.Val

GSE55457 KEGG_MISMATCH_REPAIR 0.477 0.006  < 0.001 0.005

KEGG_CELL_CYCLE 0.325 0.003  < 0.001 0.005

KEGG_DNA_REPLICATION 0.456 -0.011  < 0.001 0.015

KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.274 0.023  < 0.001 0.015

KEGG_TYPE_I_DIABETES_MELLITUS 0.459 0.011  < 0.001 0.015

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 0.367 0.011  < 0.001 0.015

KEGG_AUTOIMMUNE_THYROID_DISEASE 0.427 0.01  < 0.001 0.015

KEGG_GRAFT_VERSUS_HOST_DISEASE 0.505 0.025  < 0.001 0.015

KEGG_ALLOGRAFT_REJECTION 0.533 0.018  < 0.001 0.015

KEGG_PRIMARY_IMMUNODEFICIENCY 0.492 0.002  < 0.001 0.016

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.267 0.024 0.002 0.025

KEGG_NUCLEOTIDE_EXCISION_REPAIR 0.295 0.006 0.002 0.025

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 0.344 0.017 0.003 0.027

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.311 0.012 0.003 0.027

KEGG_HEDGEHOG_SIGNALING_PATHWAY -0.274 -0.014 0.001 0.021
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had a low infiltration level. Immune cells from differ-
ent groups were compared (Fig. 10B), and cells with sig-
nificant differences (P < 0.05) are displayed in the figure. 
Plasma cells, resting dendritic cells, gamma delta T cells, 
mast cells activated, and naive B cells differed signifi-
cantly from the heat map. For the GSE55457 dataset, the 
immune infiltration heat map was also drawn (Fig. 10C). 
The unexpressed eosinophils cells were eliminated, and 
only the dendritic cells, monocytes were activated, neu-
trophils, etc., expressed in the sample were retained in 
the heat map. However, there was little infiltration of 
activated mast cells, dendritic cells, and so forth in the 
RA group. As shown in the figure, the RA group had high 

levels of infiltration of plasma cells, naive B cells, and oth-
ers. The differential comparison between groups of the 
GSE55457 dataset (Fig.  10D) revealed significant differ-
ences in the activation of M1 macrophages, plasma cells, 
naive B cells, follicular helper T cells, activated mast cells, 
and activated dendritic cells, which was consistent with 
the results of the GSE55235 dataset.

Subtype construction based on immune infiltration 
analysis
The immune cell infiltration of the RA and normal group 
samples in the GSE55235 and the GSE55457 datasets 
was analyzed using the ssGSEA algorithm. Finally, the 

Fig. 7 Protein–protein interaction network analysis of differentially expressed genes targeted by RA (DERATGs). A Data on the number of protein 
interaction relationships of DERATGs. B Protein interaction network of DERATGs. C. Network diagram of the top 20 hub nodes. D, E Protein 
interaction network subnetwork construction based on DERATGs, D Module 1 and E Module 2
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expression profiles of immune cells were obtained after 
the expression profiles were predicted and analyzed using 
28 types of immune cell-specific marker genes. The RA 
samples were divided into two subtypes, Cluster1 and 
Cluster2, by high and low expression clustering (Fig. 11A, 
B). MDSC, eosinophil, activated CD4 + T cell, and other 
immune cells were highly expressed in Cluster1 but lowly 
expressed in Cluster2.

Differential analysis of DERATGs between subtypes
The expression of 54 DERATGs in various subtypes was 
analyzed following the RA subtypes in the GSE55235 
and the GSE55457 datasets (Fig.  12A, B). The figure 

shows the DERATGs that differ significantly (P < 0.05). 
The C7 gene was significantly expressed in Cluster2 of 
the GSE55235 dataset, while other significantly differ-
ent DERATGs were strongly expressed in Cluster1 of the 
subtype. The ERAP2 gene was highly expressed in Clus-
ter2 of the GSE55457 dataset, whereas other significantly 
differential DERATGs were highly expressed in the Clus-
ter1 subtype.

Discussion
To understand a universal marker assessment is our 
goal. However, the data sets utilized in this study 
did not precisely specify factors related to drugs, 

Fig. 8 Construction of correlation network and RNA-binding protein (RBP) correlation analysis based on differentially expressed genes targeted 
by RA (DERATGs). A Transcription factor (TF)-target network for DERATGs. The arrow is directed toward the targeted DERATGs from the predicted 
TF. B Micro RNA (miRNA)-mRNA network. Red nodes represent DERATGs, green nodes represent related miRNAs, and lines represent the regulatory 
relationships between DERATGs and miRNAs. C Heat map of the correlation between 54 DERATGs and RBP genes in the expression profile 
of the GSE55235 dataset. Positively correlated genes are represented by red, whereas negatively correlated genes are represented by blue. D Heat 
map of the correlation between 54 DERATGs and RBP genes in the expression profile of the GSE55457 dataset. Positively correlated genes are 
represented by red, whereas negatively correlated genes are represented by blue
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vaccinations, age, environments, psychology, region, 
genetics or epidemiology. This does not imply that fac-
tors related to these factors did not affect the patients 
in these two data sets. We removed a few data sets with 
particular descriptions to prevent bias in this investi-
gation to prevent the proportion of particular subjects 
from rising.

A total of 54 DERATGs were found by comparing the 
genes expressed in samples from patients with RA and 
normal groups. These DERATGs were strongly associ-
ated with inflammation and immune response. Although 
the absence of the well-known three RA star molecules 
TNF, IL6, and JAK in the DERATGs examined in this 
study, the KEGG enrichment data showed that DER-
ATGs were enriched in the TNF signaling pathway. In 
studying biologically targeted drug therapy, these three 
molecules are often accompanied by biological pro-
cesses or signaling pathways rather than being studied 
individually [28–30]. In other words, investigating what 
seems to be a single molecule is investigating the entire 
signaling pathway, but these star molecules play an unde-
niably crucial role in the signaling pathway. Moreover, 
we discovered several key molecules did not exhibit sig-
nificant differences in expression changes in actual stud-
ies (such as GSEA and GSVA pathway analyses in this 
study). Therefore, the high setting of the gene screening 

threshold may be why star molecules were absent from 
this study.

We performed GSVA and GSEA analyses by analyz-
ing all gene expression data to evaluate further RA’s 
complex signature of immune/inflammatory responses. 
Interestingly, the “Intestinal immune network for IgA 
production” showed high expression in our study, likely 
supporting our findings on the GMrepo online database. 
It has been noted that patients with RA (both new-onset 
and chronic) either showed IgA-like antibody responses 
to Prevotella copri (P. copri) or its 27-kDa protein, 
which are associated with the production of TH17 cell 
cytokines and the presence of ACPAs [31].Additionally, 
intestinal tissue samples from patients with RA contain 
higher IgA antibodies that identify dietary antigens [32]. 
Presently, most RA microbiome studies focus on asso-
ciations, which aim to link changes in the bacterial com-
position of the gastrointestinal tract with the condition. 
Although these findings suggest practical applicability, 
the mechanism by which gut flora influences the devel-
opment of RA is still not fully understood [31]. Hence, 
our study may offer the opportunity to adapt more details 
and references for future research, diagnostics, and ther-
apeutic approaches.

The inflammatory process in RA depends on 
chemokines. Multivariate discriminant analysis revealed 

Fig. 9 Construction of interaction networks between drugs and DERATGs targets. A The construction of a target-drug network via the PharmGKB 
database. B Construction of the target-drug network through the DrugCentral database. Blue indicates DERATGs, and green indicates the drugs 
predicted by DERATGs



Page 16 of 22Guan et al. Hereditas           (2024) 161:6 

that chemokines CXCL10 and CXCL13 were signifi-
cantly abundant in the blood plasma of patients with 
RA compared to healthy volunteers [33]. According to 
an in  vitro study, abatacept’s (ABT) most likely target 
molecule in inflamed rheumatoid joints is CXCL10, and 
serum CXCL10 levels may be a feasible predictor of the 
therapeutic response to ABT treatment [34]. Previous 
studies have shown that CCR5 DNA variation impacts 
the degree of RA severity [35] and that CCR5 increases 
the chemotactic response in the synovial fluid of patients 
with RA [36]. A recent literature review reported that, 
undoubtedly, CCR5 had gained its place in RA patho-
genesis as an important genetic risk factor [37]. PTPRC, 
also known as CD45 in some instances, performs several 
crucial regulatory functions that regulate cell growth, dif-
ferentiation, mitosis, and malignant transformation [38]. 
It has been demonstrated to regulate T- and B-cell anti-
gen receptor signaling [39]. In our study, the PTPRC gene 
plays a vital role in this signal transduction network. The 
PTPRC gene’s roles in RA’s pathogenesis are currently 
poorly understood.

However, four anti-TNF treatments—TNF-α inhibitors, 
adalimumab, infliximab, and etanercept—were linked to 
PTPRC in the drug-gene interaction network, demon-
strating that PTPRC is a druggable gene that can be tar-
geted by TNF-α inhibitors, adalimumab, infliximab, and 
etanercept. Additionally, PTPRC has been demonstrated 
to be the genetic biomarker of TNFi response most fre-
quently replicated and useful for targeted therapy in 
patients with RA [40]. Unfortunately, neither IL-6 nor 
JAK inhibitors showed any evidence of a genetic relation-
ship in our study. This supports the idea that biological 
processes, rather than specific molecules, are currently 
the focus of drug research. However, the druggable tar-
gets selected for this study offer a broad reference point 
for future research into new targets for old medicines.

In diseases like cancer, autoimmune disease, diabetes, 
and cardiovascular disease, TFs play a crucial biologi-
cal role [41]. Although most TFs have traditionally been 
regarded as “undruggable” targets [41], current research 
has revealed that the tumor therapy drug Binimetinib 
may have a potential targeted binding impact with 

Fig. 10 Investigation and visual representation of immune cell infiltration. A Heat map of immune infiltration in the GSE55235 dataset shows 
that rheumatoid arthritis (RA) is indicated by red cells and normal by blue cells. B A boxplot depicting significant differential immune infiltration 
cells in the GSE55235 dataset is colored red for the RA group and blue for the normal group. C. Heat map of immune infiltration in the GSE55457 
dataset; red cells indicate RA and blue cells indicate normal. D A boxplot of the significant differentially immune infiltrating cells of the GSE55457 
dataset is shown, with red for the RA group and blue for the normal group. ****p < 0.0001,***p < 0.001, **p < 0.01, and *p < 0.05
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NFKB1 [42]. Additionally, it has been reported that small 
molecule inhibitors can specifically target AR, making it 
the primary treatment target for advanced cancer [43]. 
This is also something that research has found. Combin-
ing ketoprofen and indolamide inhibits the Gli1-medi-
ated transcription in the Hedgehog pathway [44]. It has 
been demonstrated that the novel oral active molecular 
gel WBC100 selectively degrades the protein c-Myc over 

other proteins and effectively kills cancer cells that over-
express c-Myc [45]. Human triple-negative breast and 
gastric cancer xenografts have been demonstrated to 
regress in response to WZ-2–033, a new STAT3 inhibitor 
[46]. According to a study, a bromine domain and extra 
terminal domain inhibitor can induce tumor cell apopto-
sis by disrupting the specific transcription network that 
the TCF4 TF regulates [47]. However, other TFs in this 

Fig. 11 Rheumatoid arthritis sample subtype analysis. A Heat map of the 28 distinct types of immune cell infiltration in the GSE55235 dataset. 
Red and green symbolize the groups in Clusters 1 and 2, respectively. B Heat map of immune cell infiltration of 28 different kinds in the GSE55457 
dataset. Red and green symbolize the groups in Clusters 1 and 2, respectively
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study have not consistently been reported to be pharma-
cologically actionable. In conclusion, although the major-
ity of present work on druggable TFs focuses on cancer 
drug development, it also offers suggestions for work on 
RA-related druggable TFs. We believe that NFKB1, AR, 
GLI1, Myc, STAT3, and TCF4 are now the most poten-
tially druggable TFs based on the regulatory relationship 
between TFs and DERATGs in this study.

Currently, cell-type deconvolution analysis is frequently 
applied in RA research. FAS, MAPK8, and TNFSF10 may 
be associated with alterations in the immune microenvi-
ronment in patients with RA, according to a study that 
used CIBERSORT analysis [48]. It was discovered that 
SLC2A3 is positively associated with the expression of 
activated mast cells in RA synovial tissue using immune 
cell infiltration [49]. The CIBERSORT study found that 
the RA key genes CXCL8, CXCL2, and FADD were asso-
ciated with mast cells, monocytes, activated natural killer 

cells, CD8 T cells, dormant dendritic cells, and plasma 
cells [50]. In this study, we performed a thorough anal-
ysis of the immune infiltration landscape using ssGSEA 
and CIBERSORT algorithms to quantify the profile of 
immune infiltration in RA. Studies have shown that 20% 
of the antibodies mature naive B cells produce when they 
reach the periphery are still autoreactive. This percentage 
is significantly higher in patients with RA [51, 52]. Rituxi-
mab, a therapeutic antibody that targets CD20, has been 
successfully used as a B cell therapy to treat RA. Over 
the last decade, additional RA studies have suggested 
that (autoreactive) B cells may contribute to the progres-
sion of the disease [53]. There has been no research on 
RA therapy targeting plasma cells, and the function of 
plasma cells in RA is still unknown [54].

Regarding the involvement of mast cells and dendritic 
cells (DC cells) in the pathogenesis of RA, conflicting 
results have also been found. Although most research 

Fig. 12 Differential analysis of DERATGs between subtypes. A The GSE55235 dataset expresses 11 DERATGs in two subtypes. Red and green 
symbolize the groups in Clusters 1 and 2, respectively. B The GSE55457 dataset expresses 16 DERATGs in two subtypes. Red and green symbolize 
the groups in Clusters 1 and 2, respectively



Page 19 of 22Guan et al. Hereditas           (2024) 161:6  

has focused on the role of mast cells in the pathogen-
esis of RA [55–60] and that immature and activated 
DC cell populations are present in the synovium of 
the inflamed joint [61]. We found that patients with 
RA had decreased mast cell and DC cell infiltration in 
their tissues. However, other studies have suggested 
that steroid use may be related to decreased mast cells 
and DC cells in patients with RA [62–64]. The specific 
cause of the decline in mast cells and DC cells in RA 
must be further investigated because it is unknown if 
the patients in this study were using corticosteroids or 
other drugs.

Cluster1 and Cluster2, subtypes of expression pro-
files, were identified based on immune cell expression. 
The purpose of the analysis was to provide a better 
understanding of the function and regulatory mecha-
nisms of the immune system. We can better understand 
the function and regulatory mechanisms of immune 
cells by understanding the expression forms of each 
subtype through the analysis of gene expression in sub-
types. Determine which subtypes share the most com-
mon characteristics to determine the most effective 
course of action. Additionally, subtype expression pro-
files can also aid in the discovery of novel therapeutic 
targets. We might identify potential genes or molecules 
to be used as therapeutic targets by analyzing the genes 
expressed in specific subtypes. However, further exper-
imental verification is required. The findings indicate 
that the PTPRC gene was highly expressed in Cluster1 
in the GSE55235 and GSE55457 datasets. PTPRC may 
be the characteristic gene of the Cluster1 subtype in 
these two datasets or play a significant biological func-
tion that may be directly associated with the function 
of this subtype. We also noticed discrepancies in the 
analysis results between the two data sets, which we 
believe may be due to a batch effect brought on by the 
differences in data set sample collection location, time 
and computer sequencing time. Another major limita-
tion of this study is the batch effect.

This study has some other drawbacks. First, the study 
lacked clinically important details about the condition, 
such as disease activity and treatment usage. Addition-
ally, no multi-group trials were conducted, and the 
study’s sole focus was on the gene transcriptome. Finally, 
bioinformatics approaches limited data analysis; preclini-
cal and clinical validation is required.

In conclusion, the scientific community needs to inves-
tigate and comprehend how gut microbiota, genetics, and 
immune inflammation are related to the etiology of RA. 
The findings of this study might be used as a reference 
for clinical diagnosis, prognosis, and targeted molecular 
treatment for RA.

Appendix

Table 7 Gene symbol

Gene.Symbol Official.Full.Name

IGHM immunoglobulin heavy constant 
mu

IGLL5 immunoglobulin lambda like 
polypeptide 5

MZB1 marginal zone B and B1 cell 
specific protein

SEL1L3 SEL1L family member 3
IGH immunoglobulin heavy locus
CCR2 C–C motif chemokine receptor 2
NCF1 neutrophil cytosolic factor 1
SEMA4D semaphorin 4D
SDC1 syndecan 1
CD2 CD2 molecule
CD52 CD52 molecule
PSMB9 proteasome 20S subunit beta 9
TYMS thymidylate synthetase
CD3D CD3 delta subunit of T‑cell recep‑

tor complex
IL7R interleukin 7 receptor
PTPRC protein tyrosine phosphatase 

receptor type C
GZMA granzyme A
RASGRP1 RAS guanyl releasing protein 1
CD27 CD27 molecule
CXCL13 C‑X‑C motif chemokine ligand 13
TNFRSF17 TNF receptor superfamily mem‑

ber 17
CCL5 C–C motif chemokine ligand 5
CCR5 C–C motif chemokine receptor 5
CXCL10 C‑X‑C motif chemokine ligand 10
CCL18 C–C motif chemokine ligand 18
IL2RG interleukin 2 receptor subunit 

gamma
SLAMF8 SLAM family member 8
HLA‑DOB major histocompatibility com‑

plex, class II, DO beta
MMP1 matrix metallopeptidase 1
LAP3 leucine aminopeptidase 3
ADAM28 ADAM metallopeptidase domain 

28
TPD52 tumor protein D52
IL32 interleukin 32
CXCL9 C‑X‑C motif chemokine ligand 9
AIM2 absent in melanoma 2
LAMP3 lysosomal associated membrane 

protein 3
LGALS2 galectin 2
CCR7 C–C motif chemokine receptor 7
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Gene.Symbol Official.Full.Name

CCL13 C–C motif chemokine ligand 13
MS4A1 membrane spanning 4‑domains 

A1
ERAP2 endoplasmic reticulum amin‑

opeptidase 2
KLF4 KLF transcription factor 4
GADD45B growth arrest and DNA damage 

inducible beta
FOSB FosB proto‑oncogene, AP‑1 tran‑

scription factor subunit
EGFR epidermal growth factor receptor
SOCS3 suppressor of cytokine signal‑

ing 3
EGR1 early growth response 1
JUNB JunB proto‑oncogene, AP‑1 tran‑

scription factor subunit
C7 complement C7
NR4A1 nuclear receptor subfamily 4 

group A member 1
JUN Jun proto‑oncogene, AP‑1 tran‑

scription factor subunit
HAS1 hyaluronan synthase 1
SFRP1 secreted frizzled related protein 1
FKBP5 FKBP prolyl isomerase 5
TNF tumor necrosis factor
IL6 interleukin 6
JAK1 Janus kinase 1
JAK2 Janus kinase 2
JAK3 Janus kinase 3
TYK2 tyrosine kinase 2
NFKB1 nuclear factor kappa B subunit 1
AR androgen receptor
GLI1 GLI family zinc finger 1
MYC MYC proto‑oncogene, bHLH 

transcription factor
STAT3 signal transducer and activator of 

transcription 3
TCF4 transcription factor 4
FAS Fas cell surface death receptor
MAPK8 mitogen‑activated protein kinase 

8
TNFSF10 TNF superfamily member 10
SLC2A3 solute carrier family 2 member 3
CXCL8 C‑X‑C motif chemokine ligand 8
CXCL2 C‑X‑C motif chemokine ligand 2
FADD Fas associated via death domain
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