
Chen et al. Hereditas           (2024) 161:2  
https://doi.org/10.1186/s41065-023-00301-z

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Hereditas

Network pharmacology to unveil 
the mechanism of suanzaoren decoction 
in the treatment of alzheimer’s with diabetes
Tao Chen1†, Yining Lei2†, Manqin Li2, Xinran Liu2, Lu Zhang2, Fei Cai2,3, Xiaoming Gong1* and Ruyi Zhang2*   

Abstract 

Background Suanzaoren Decoction (SZRD), a well-known formula from traditional Chinese medicine, has been shown 
to have reasonable cognitive effects while relaxing and alleviating insomnia. Several studies have demonstrated signifi-
cant therapeutic effects of SZRD on diabetes and Alzheimer’s disease (AD). However, the active ingredients and prob-
able processes of SZRD in treating Alzheimer’s with diabetes are unknown. This study aims to preliminarily elucidate 
the potential mechanisms and potential active ingredients of SZRD in the treatment of Alzheimer’s with diabetes.

Methods The main components and corresponding protein targets of SZRD were searched on the TCMSP database. 
Differential gene expression analysis for diabetes and Alzheimer’s disease was conducted using the Gene Expression 
Omnibus database, with supplementation from OMIM and genecards databases for differentially expressed genes. 
The drug-compound-target-disease network was constructed using Cytoscape 3.8.0. Disease and SZRD targets 
were imported into the STRING database to construct a protein-protein interaction network. Further, Gene Ontology 
and Kyoto Encyclopedia of Genes and Genomes analyses were performed on the intersection of genes. Molecular 
docking and molecular dynamics simulations were conducted on the Hub gene and active compounds. Gene Set 
Enrichment Analysis was performed to further analyze key genes.

Results Through the Gene Expression Omnibus database, we obtained 1977 diabetes related genes and 622 AD related 
genes. Among drugs, diabetes and AD, 97 genes were identified. The drug-compound-target-disease network revealed 
that quercetin, kaempferol, licochalcone a, isorhamnetin, formononetin, and naringenin may be the core components 
exerting effects. PPI network analysis identified hub genes such as IL6, TNF, IL1B, CXCL8, IL10, CCL2, ICAM1, STAT3, and IL4. 
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that SZRD in the treatment of Alzhei-
mer’s with diabetes is mainly involved in biological processes such as response to drug, aging, response to xenobiotic, 
and enzyme binding; as well as signaling pathways such as Pathways in cancer, Chemical carcinogenesis - receptor acti-
vation, and Fluid shear stress and atherosclerosis. Molecular docking results showed that licochalcone a, isorhamnetin, 
kaempferol, quercetin, and formononetin have high affinity with CXCL8, IL1B, and CCL2. Molecular dynamics simulations 
also confirmed a strong interaction between CXCL8 and licochalcone a, isorhamnetin, and kaempferol. Gene Set Enrich-
ment Analysis revealed that CXCL8, IL1B, and CCL2 have significant potential in diabetes.
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Conclusion This study provides, for the first time, insights into the active ingredients and potential molecular mecha-
nisms of SZRD in the treatment of Alzheimer’s with diabetes, laying a theoretical foundation for future basic research.

Highlights 

• SZRD may improve Alzheimer’s with diabetes through potential active ingredients and hub genes.

• licochalcone a, isorhamnetin, kaempferol, quercetin, and formononetin are potential active ingredients of SZRD 
for the treatment of Alzheimer’s with diabetes.

• IL6, TNF, IL1B, CXCL8, IL10, CCL2, ICAM1, STAT3 and IL4 are hub genes and have a strong binding capacity to potential 
active ingredients.

Keywords Network pharmacology, Molecular dynamics simulation, Alzheimer’s with diabetes, Licochalcone A, 
Isorhamnetin, Kaempferol
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Introduction
Diabetes is increasingly prevalent globally, with the high-
est incidence observed in the age group of 75–79 years 
old [1]. In 2021, global healthcare expenditures associ-
ated with diabetes were estimated at $966 billion, with a 
projected increase to $10.54 trillion by 2045 [2]. AD is the 
leading neurodegenerative cause of dementia, responsi-
ble for 50–70% of cases of neurodegenerative dementia. 
The estimated global prevalence of dementia is around 44 
million people, and this number is projected to triple by 
2050 [3]. Diabetes can result in brain tissue damage and 
cognitive dysfunction, and it is also recognized as a risk 
factor for AD [4, 5]. Epidemiological studies have con-
firmed that individuals with diabetes have an elevated 
risk of dementia compared to those without diabetes [6]. 
Studies have shown that the risk of dementia in patients 
with diabetes is associated with the prevalence of mild 
cognitive dysfunction progressing to dementia [7]. Cog-
nitive dysfunction in individuals with diabetes plays a sig-
nificant role in the relationship between diabetes and AD. 
Hence, the discovery of novel therapeutic drugs for man-
aging Alzheimer’s with diabetes holds profound implica-
tions for individuals with both diabetes and AD.

Traditional Chinese medicine has garnered grow-
ing attention as a potential treatment for cognitive 
impairments associated with diabetes. SZRD is a Chi-
nese herbal formula that originated from the book “Jin 
Kui Yao Lue” written by Zhang Zhongjing in the Han 
Dynasty, and it comprises five medicinal herbs, namely 
Ziziphus jujuba Mill (Suanzaoren, SZR), Glycyrrhiza 
uralensis Fisch (Gancao, GC), Anemarrhena asphode-
loides Bunge (Zhimu, ZM), Poria cocos (Schw.) Wolf. 
(Fuling, FL), and Ligusticum acuminatum Franch. 
(Chuanxiong, CX), known for their calming, nourish-
ing, and insomnia-treating effects. Despite being a tra-
ditional herbal prescription for insomnia, SZRD has also 
been utilized in the treatment of other ailments. Studies 
have demonstrated that SZRD can elevate the levels of 
neurotransmitters, including 5-HT, DA, and GABA, in 
the brain, potentially contributing to its effectiveness in 
treating insomnia [8]. Moreover, SZRD has exhibited the 
ability to enhance learning and memory in mouse mod-
els of AD [9]. In addition, Glycyrrhiza uralensis Fisch [10] 
and Anemarrhena asphodeloides Bunge [11] have been 
found to improve diabetes. We hypothesize that SZRD 
holds promising potential for the treatment of cogni-
tive impairments and diabetes. Further investigation and 
elucidation of its underlying compounds and targets are 
warranted to comprehensively understand its therapeutic 
effects in cognitive disorders.

The network pharmacology approach was originally 
introduced as a novel avenue for identifying new drug 
candidates and repurposing existing ones from intricate 

network models [12]. The study of herbal medicines in dis-
ease treatment poses unique challenges due to their com-
plex composition, multiple targets, and broad therapeutic 
signaling pathways [13]. Hence, utilizing network pharma-
cology to elucidate the effects of traditional herbal formula-
tions on complex diseases and predict potential compounds 
and targets represents a crucial approach. Molecular dock-
ing, as a structure-based and computer-assisted drug 
design method, holds a pivotal role in drug discovery and 
research [14]. Molecular dynamics simulation, capable of 
capturing the real-time trajectory of macromolecules [15], 
has found widespread use in various fields, including biol-
ogy. We have employed a multi-faceted approach encom-
passing bioinformatics, network pharmacology, molecular 
docking, and molecular dynamics simulation to precisely 
target herbal medicines for disease treatment.

SZRD has demonstrated promising efficacy in improving 
cognitive dysfunction, and some studies have also reported 
its potential in lowering blood glucose levels. We posit that 
SZRD may hold promise as an herbal medicine for treating 
Alzheimer’s with diabetes, albeit challenges persist in iden-
tifying its composition and targets. Therefore, this study 
has integrated bioinformatics, network pharmacology, 
and molecular docking to predict the active compounds, 
potential targets, and underlying molecular mechanisms 
of SZRD in Alzheimer’s with diabetes, aiming to contrib-
ute to the field of traditional Chinese medicine and pro-
vide a reference and foundation for future researchers. The 
experimental workflow is illustrated in Fig. 1.

Methods
Component target prediction
Traditional Chinese Medicine Pharmacology Systematic 
Pharmacology (TCMSP, https:// old. tcmsp-e. com/ tcmsp. 
php) database based on the systematic pharmacology of 
Chinese medicine [16], It contains a rich variety of herbs, 
chemical components, and 12 important properties 
related to ADME required for drug screening and evalu-
ation. Oral bioavailability (OB) is the rate and extent to 
which a drug is absorbed into the circulation. Drug simi-
larity (DL) is the similarity between the component and 
the marketed drug [17]. Based on the OB principle, we 
used OB ≥ 30% and DL ≥ 0.18 in the TCMSP component 
screening [18], while reviewing the literature for further 
collection. Uniport (http:// www. unipr ot. org/) was used 
to transform the obtained targets in terms of gene sym-
bols. Admetlab 2.0 (https:// admet mesh. scbdd. com/) is an 
online pharmacokinetic and toxicity prediction program 
[19]. It was used to predict drug absorption, distribution, 
metabolism, excretion, and toxicity profiles. The SMILES 
of the compounds are entered into Admetlab 2.0 to 
obtain the absorption, distribution, and toxicity profiles 
of the components, etc.

https://old.tcmsp-e.com/tcmsp.php
https://old.tcmsp-e.com/tcmsp.php
http://www.uniprot.org/
https://admetmesh.scbdd.com/
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Disease target prediction
The Gene Expression Omnibus Dataset (GEO, http:// 
www. ncbi. nlm. nih. gov/ geo/) database is a website for 
disease gene expression, and we used “diabetes” and " 
Alzheimer’s disease " as search strategies, limiting spe-
cies to “homo spines”. We selected datasets for diabetes 
(GSE15653) and AD (GSE132903), using “limma”, “pheat-
map”, “ggplot2 “, “ggsci”, “dplyr”, “org.Hs.eg.db” and “patch-
work” packages were used to visualize the differentially 
expressed genes(DEG), volcanoes and heatmaps, and the 
threshold values for DEG identification were |logfc|>0.5 
and P < 0.05 [20]. The search for AD and diabetes-related 
targets was performed by Genecards (https:// www. genec 
ards. org/) and OMIM (https:// www. omim. org/) using the 
keywords “AD” and “diabetes”. The Relevance score was 
restricted to the second average in Genecards to accurately 
screen the relevant targets, and all the targets of diabetes 
and AD were combined and removed the duplicate values 
to draw a Venn diagram.

Construction of drug‑compound‑target‑disease (D‑C‑T‑D) 
networks and protein‑protein interaction (PPI) networks
To better analyze the connection between drugs, com-
ponents, and targets, we built a “D-C-T-D” network in 
Cytoscape 3.8.0 software, Cytoscape can calculate the 
parameters of each node in the network graph, such as 
degree, betweenness centrality (BC), closeness centrality 
(CC), etc. [21, 22]. All these parameters allow an in-depth 
analysis of the properties of the nodes in the interaction 
network, and we used the degree, BC, and CC to filter the 
top-ranked components and targets, regarded as play-
ing a central role. The STRING network was constructed 
(https:// string- db. org/) as a database for analyzing the 

relationships between proteins [23]. Using this database, 
we construct a “PPI” network that captures the interac-
tions between intersecting targets and collects targets 
with strong connections. The scoring condition was set 
to > 0.70 and the selected target proteins were restricted 
to Homo sapiens. In the PPI network, edges represent 
protein-protein associations, and the more lines there 
are, the greater the correlation. Screening of key targets 
and analysis followed.

Hub gene extraction and MCODE analysis
PPI networks consist of nodes, edges, and connecting 
lines, and it is generally believed that the most critical 
nodes are hub genes. Cytohubba (http:// apps. cytos cape. 
org/ apps/ cytoh ubba) is a new Cytoscape plugin for rank-
ing and extracting biological networks based on various 
network features for central or potential target elements 
based on various network features. Cytohubba has 11 
methods to study networks from different perspectives, 
of which maximum population centrality (MCC) is the 
best one [24]. We used the MCC of Cytohubba to iden-
tify the top 10 hub genes from PPI networks. Metascape 
(https:// metas cape. org/ gp/ index. html) is an efficient tool 
in the era of big data, combining functional enrichment, 
interactome analysis, gene annotation, and member 
search to provide a comprehensive gene list annotation 
and analysis resource [25]. We entered all intersecting 
genes into Metascape for MCODE analysis.

GO and KEGG pathway enrichment analysis
R packages such as “org.Hs.eg.db”, “clusterprofiler”, 
“enrichplot”, “ggplot2”, “ggnewscale” and “DOSE” were 

Fig. 1 Workflow of the network pharmacological investigation strategy of SZRD in the treatment of diabetes and AD. Four parts include target 
preparation, Hub gene, and network analysis, GO and KEGG analysis, molecular docking verification, and GSEA analysis

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://www.genecards.org/
https://www.omim.org/
https://string-db.org/
http://apps.cytoscape.org/apps/cytohubba
http://apps.cytoscape.org/apps/cytohubba
https://metascape.org/gp/index.html
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used for GO and KEGG enrichment analysis and result 
plotting. GO is divided into three categories, namely 
biological process (BP), Cellular component (CC), and 
Molecular function (MF), and KEGG enrichment analy-
sis is a way to analyze the pathway enrichment of genes. 
All intersecting targets were analyzed and the top ten 
biological processes of BP, CC, MF and KEGG in GO 
were selected for graphical visualization.

Molecular docking
Molecular docking is one of the most commonly used 
methods for structure-based drug design [26]. Molecu-
lar docking of active compounds and hub genes was 
performed using autodocktools-1.5.7 software. First, the 
3D structure of the active compound was downloaded 
from PubChem (http:// Pubch em. ncbi. nlm. nih. gov/); 
then, the water was removed, and hydrogen atoms were 
added and converted to PDBQT format using autodock-
tools. Download the PDB format of the relevant target 
at RSCB-PDB (https:// www. rcsb. org/) and remove the 
ligands and water molecules using PYMOL software. 
Then, import them into autodocktools, add hydrogen 
atoms, calculate the charges, convert them to PDBQT 
format and perform molecular flexible docking, selecting 
the docking model with the lowest binding energy among 
them. Finally, the 3D docking results were visualized 
using PYMOL software and the 2D docking results were 
visualized using Discovery Studio software 2017. Among 

them, a docking score AFFINITY <-4.25 KCAL/MOL−1 
considered a binding activity between ligand and target, 
a score <-5.0 KCAL/MOL−1 indicated a better binding 
activity, and a score <-7.0 KCAL/MOL−1 a strong dock-
ing activity between the two [27].

Molecular dynamics simulation
All-atom molecular dynamics simulations were per-
formed separately based on the small molecule and 
protein complexes obtained from the above docking as 
initial structures, and the simulations were performed 
using AMBER 18 software [28]. Before the simulations, 
the charges of the small molecules were obtained by the 
antechamber module and Hartree-Fock (HF) SCF/6-
31G* calculations of the Gaussian 09 software [29, 30]. 
The small molecule and protein force fields were used 
for GAFF2 small molecule force field and ff14sb pro-
tein force field, respectively [31, 32]. The leap module 
was used for each system to add hydrogen atoms to the 
system, a truncated octahedral TIP3P solvent cartridge 

was added at a distance of 10 Å from the system [33], 
and Na+/Cl- was added to balance the system charge. A 
200 ps ramp-up of the system was performed to slowly 
increase the system temperature from 0 to 298.15 K. 
A 500 ps simulation of the NVT (isothermal isomer) 
tether was performed with the system maintained 
at 298.15 K. In the case of NPT (isothermal isobaric), 
equilibrium simulations were performed for the whole 
system for 500 ps. Finally, 100 ns of NPT (isothermal 
isobaric) tethering simulations were performed sepa-
rately. For the simulations, the non-bond truncation 
distance is set to 10 Å. The Particle mesh Ewald (PME) 
method is used to calculate the long-range electrostatic 
interaction [34], the SHAKE method is used to limit the 
bond length of hydrogen atoms [35], and the Langevin 
algorithm is used for temperature control [36], where 
the collision frequency γ is set to 2  ps-[1]. The system 
pressure is 1 atm, the integration step is 2 fs, and the 
trajectories are saved at 10 ps intervals for subsequent 
analysis. The traces were saved at 10 ps intervals for 
subsequent analysis.

The binding free energies between proteins and ligands 
for all systems were calculated by the MM/GBSA method 
[37–40]. The long-time molecular dynamics simulations 
may not be conducive to the accuracy of MM/GBSA cal-
culations [38]. Therefore, the MD trajectory of 90–100 ns 
was used as the calculation in this study with the follow-
ing equations.

In Eq. (1), �Einternal denotes internal energy、�EVDW
denotes van der Waals interaction, and �Eelec denotes 
electrostatic interaction. The internal energy includes 
 Ebond,  Eangle, and  Etorsion;�GGB and �GGA are collectively 
referred to as the solventization free energy. Among 
them,  GGB is the polar solvation free energy and  GSA 
is the non-polar solvation free energy. For �GGB , the 
GB model (igb = 2) developed by Nguyen [41] is used 
for the calculation. The nonpolar solvation free energy 
(ΔGSA) is calculated based on the product of surface ten-
sion (γ) and solvent accessible surface area (SA), ΔGSA= 
0.0072 × ΔSASA [42]. The entropy change is neglected in 
this study due to high computational resources and low 
precision; this study was neglected [37, 38].

Gene Set Enrichment Analysis (GSEA)
The Gene Set Enrichment Analysis [43] was performed by 
“ggplot2”, “limma”, “ggsci”, “org.Hs.eg.db” and “patchwork”. 
We selected the top 3 genes of molecular docking results 

(1)�Gbind = �Gcomplex − (�Greceptor + �Gligand) = �Einternal + �EVDW + �Eelec + �GGB + �GSA

http://Pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
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for GSEA single gene analysis, and the disease group of 
GSE15932 (diabetes) was selected for the signature gene set. 
Enrichment scores (ES) were calculated based on weighted 
Kolmogorov-Smirnov class statistics, and their magnitude 
reflects the correlation between gene set and phenotype. A 
higher ES of a gene set implies a higher likelihood that the 
gene set is enriched in a specific phenotype [44].

Result
Data collection of disease and drug components
First, to precisely identify the targets of diabetes and AD. 
We retrieved DEGs by comparing the differential gene 
expression levels between control and disease groups. 
GSE15653 selected 5 control and 9 diabetes group sam-
ples and analyzed 995 up-regulated and 982 down-regu-
lated genes (Fig. 2a); GSE132903 selected 98 control and 
97 AD group samples and analyzed 336 down-regulated 
genes and 286 up-regulated genes (Fig. 2c). The DEGs of 
the top 30 up and down-regulated genes (Fig. 2b, d) were 
also shown with heat maps. 1051 diabetes targets and 
1354 AD targets were identified in genecards; 225 diabe-
tes targets and 546 AD targets were identified in OMIM 
as complementary targets for diabetes and AD.

To identify the potentially active chemical components 
in Chinese medicine. The chemical composition of each 
herbal drug collected from TCMSP was initially screened 
using the OB and DL properties of the drugs. The litera-
ture was also reviewed and a total of 108 potential com-
ponents were identified. Among them, SZR and FL both 
had 4 components, ZM had 11 components, CX had 6 
components and GC had 85 components, MOL000359 
was common to GC and CX, and MOL000422 was com-
mon to ZM and GC. After the uniport transformation 
of the targets, a total of 253 targets corresponding to the 
compounds were found in TCMSP. The intersection of 97 
targets among drug, diabetes, and AD were obtained by 
making a Venn diagram (Fig. 3a).

Construction of D‑C‑T‑D networks and PPI networks
These intersection targets and corresponding components 
were imported into Cytoscape to draw a D-C-T-D net-
work graph, including 212 nodes and 1114 edges (Fig. 3b). 
Network analysis allows the identification of potentially 
active compounds for drug therapeutic action. The net-
work was analyzed by Cytoscape, and MOL000098 (degree: 
69), MOL000422 (degree: 26), MOL004328 (degree: 
19), MOL000392 (degree: 16), MOL000354 (degree: 16), 
and MOL000497 (degree: 15) were the key compounds 
(Table  1). The 97 intersecting targets were also imported 
into the string database to obtain the PPI network graph, 
with 97 points and 641 edges (Fig. 3c). These results suggest 
that SZRD may act on Alzheimer’s with diabetes through 

these compounds, and the existence of a strong association 
between these targets suggests that SZRD can have a thera-
peutic effect on Alzheimer’s with diabetes through the abil-
ity of multiple compounds and multiple targets thus.

Hub gene extraction and MCODE analysis
Most of the interconnected nodes in a PPI network are 
considered to be hub genes in the PPI network. Accord-
ing to the PPI network analysis of the Cytohubba plugin 
in Cytoscape, we listed the top 9 (9.28%) DEGs as the 
most influential genes (Fig. 3d). The hub gene is namely 
IL6 (Score: 9.75E + 08), TNF (Score: 9.75E + 08), IL1B 
(Score: 9.74E + 08), CXCL8 (Score: 9.74E + 08), IL10 
(Score: 9.74E + 08), CCL2 (Score: 9.74E + 08), ICAM1 
(Score: 9.74E + 08), STAT3 (Score: 9.66E + 08) and IL4 
(Score: 9.62E + 08). These hub genes may be poten-
tial biomarkers, which may also be new disease treat-
ment strategies. To better understand these targets, we 
performed MCODE module analysis with the help of 
Metascape to gain more insight into the degree of target 
clustering (Fig. 4). The results of MCODE clustering anal-
ysis showed that these targets were mainly clustered in 
pathway in cancer, inflammatory response, AGE-RAGE 
signaling pathway in diabetic complications, inflamma-
tory response, and response to peptide.

GO and KEGG enrichment analysis
R was used to perform GO and KEGG enrichment analy-
sis to identify intersecting genes that share the biological 
significance and enrichment pathways highlighted in this 
study. Gene ontology considers gene functions and their 
components, providing a broad resource of computable 
knowledge. Gene ontology analysis was performed for 
three categories (biological processes, cellular compo-
nents, and molecular functions) and the GO database was 
selected as the annotation source. KEGG analysis reveals 
the response of an organism to its intrinsic modifications. 
It is a modeling technique to demonstrate the interactions 
between various diseases through underlying molecular or 
biological processes. Table 2 summarizes the top 10 terms 
in the categories of biological processes, molecular func-
tions, and cellular components; Table  3 summarizes the 
top 20 terms in the KEGG pathway. We plotted network 
diagrams (Fig. 5a, b, c, e) and bubble diagrams (Fig. 5d, f ) 
for the top ten GO entries and KEGG pathways and cor-
responding targets. These results can reveal that SZRD 
can function in multiple biological processes and sign-
aling pathways, probably mainly enriched in biological 
processes such as response to nutrient levels, response to 
oxidative stress, and cellular response to chemical stress. 
KEGG enrichment analysis showed that the KEGG enrich-
ment was mainly in multiple pathways such as Fluid shear 
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Fig. 2 Screening of diabetes and AD targets. Differential volcano plot showing the gene distribution of disease samples, GSE15653 (a) 
and GSE132903(b), The heat map shows the top 30 up- and down-regulated DEGs, GSE15653 (c) and GSE132903 (d)
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Fig. 3 Network pharmacology. a Venn diagram of 97 intersecting targets between drug, diabetes, and AD, (b) D-C-T-D network diagram, gancao 
(blue green), zhimu (blue-violet), chuangxiong (red), suanzaoren (green), fuling (yellow), and targets (light yellow). c PPI network of 97 intersecting 
targets. d The top 9 gene is selected MCC from the PPI network
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stress and atherosclerosis, AGE-RAGE signaling pathway 
in diabetic complications, and Lipid and atherosclerosis.

We found that through AGE-RAGE signaling pathway 
in diabetic complications and Fluid shear stress and ath-
erosclerosis, signaling pathways were highly expressed in 
KEGG enrichment analysis and MCODE analysis, using 
the “pathview” package for the visualization of the pathways 
(Fig.  6). From the pathway map, we can find that PI3K/
AKT signaling pathway and MAPK signaling pathway form 
the AGE-RAGE signaling pathway in diabetic complica-
tions and Fluid shear stress and atherosclerosis, so we think 
PI3K/AKT signaling pathway and MAPK signaling path-
way may have a strong correlation in these pathways. But 
the exact mechanism may need further validation.

Molecular docking
Molecular docking is a bioinformatics tool that is the pro-
cess of finding the best combination of small molecules 

(ligands) and biomacromolecules (receptors) by inter-
molecular geometric matching and energy calculation 
of their patterns and effectiveness. Molecular docking of 
the first 6 active compounds and 9 hub genes was per-
formed using autodocktools software, and a heat map 
of the docking results was created using “pheatmeap” 
(Fig. 7). Then we used PYMOL to visualize the molecu-
lar docking results in 3D and discovery studio software 
to visualize the docking results in 2D and selected the 
five compounds with the best docking activation perfor-
mance to the hub gene (Fig. 8). The results showed that 
CXCL8 had high binding activity to most of the com-
pounds, with licochalcone a, isorhamnetin, kaempferol, 
quercetin, and formononetin having the strongest dock-
ing activity, all with docking activation energies between 
− 8.5 and − 9.8, which also implies stable binding. From 
the 2D results, the binding affinity was mainly attributed 
to hydrogen bonding, Pi-alkyl, pi-cation, and van der 

Table 1 Top ten compounds information of D-C-T-D network

The prediction probability values are transformed into six symbols: 0–0.1(---), 0.1–0.3(--), 0.3–0.5(-), 0.5–0.7(+), 0.7–0.9(++), and 0.9–1.0(+++). The token ‘+++’ or ‘++’ 
represents the molecule is more likely to be toxic or defective, while ‘---’ or ‘--’ represents nontoxic or appropriate. OB Oral Bioavailability, DL Drug-Likeness, DILI Drug 
induced liver injury, AMES The bacterial reverse mutation test
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Fig. 4 Results of MCODE analysis. a Network diagram of PPI after MCODE clustering analysis. b Network diagram of MCODE clustering separately. 
c The entries, categories, and corresponding log p-values of each cluster were obtained from the MCODE cluster analysis
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Waals forces. We found that these potential compounds 
have strong binding affinity to the core gene and molecu-
lar docking can only predict the binding pattern between 
the core gene and the potential compound. It should be 
noted that we still need further experimental validation 
of these potential compounds and targets is needed.

Molecular dynamics simulation
Molecular dynamics can be good for discovering the rela-
tionship between proteins and ligands. We performed 
molecular dynamics simulations for CXCL8- licochal-
cone a, CXCL8- isorhamnetin and CXCL8- kaempferol 
for 100ns to evaluate the intermolecular motions, trajec-
tories, structures, binding potentials, and conformational 
changes by analyzing the molecular docking results.

Root-mean-square deviation (RMSD) can reflect the 
motion process of the complexes, with larger RMSD as 
well as more intense fluctuations indicating violent motion 
and, conversely, smooth motion. In conclusion, our study 
shows that the system maintains a stable RMSD fluctuation 
under the binding of three small molecules, which means 
that the small molecules are stable (Fig.  9a). Root Mean 
Square Fluctuation (RMSF) can respond to the flexibility 
of the protein during molecular dynamics simulations. 
about the same, indicating that Isorhamnetin, Kaempferol, 
and Licochalcone_A binding is stable and does not affect 
the flexibility of the protein (Fig. 9b). The hydrogen bond 
is one of the strongest non-covalent binding interactions, 
and the higher number indicates better binding. how the 
three groups of CXCL8/Isorhamnetin, CXCL8/Kaemp-
ferol, and CXCL8/Licochalcone_A generally had between 

Table 2 GO analysis; divided into three categories (the first 10 articles with the smallest p-value)

GO ID Term count P‑values Category

GO:0031667 response to nutrient levels 32 1.43E-27 Biological process

GO:0006979 response to oxidative stress 31 1.99E-27 Biological process

GO:0062197 cellular response to chemical stress 28 2.95E-26 Biological process

GO:0034599 cellular response to oxidative stress 25 3.74E-24 Biological process

GO:0032496 response to lipopolysaccharide 26 9.96E-24 Biological process

GO:0062012 regulation of small molecule metabolic process 26 9.96E-24 Biological process

GO:0000302 response to reactive oxygen species 22 2.25E-23 Biological process

GO:0002237 response to molecule of bacterial origin 26 4.67E-23 Biological process

GO:1901653 cellular response to peptide 26 1.16E-22 Biological process

GO:0045121 membrane raft 26 1.24E-22 Biological process

GO:0098857 membrane microdomain 17 2.88E-13 Cellular component

GO:0031983 vesicle lumen 17 3.03E-13 Cellular component

GO:0060205 cytoplasmic vesicle lumen 13 6.07E-09 Cellular component

GO:0044853 plasma membrane raft 12 5.48E-08 Cellular component

GO:0005901 Caveola 8 7.45E-08 Cellular component

GO:0009897 external side of the plasma membrane 7 1.39E-07 Cellular component

GO:0034774 secretory granule lumen 13 3.43E-07 Cellular component

GO:1904813 ficolin-1-rich granule lumen 11 4.42E-07 Cellular component

GO:0016605 PML body 7 2.34E-06 Cellular component

GO:0045121 membrane raft 6 1.19E-05 Cellular component

GO:0005125 cytokine activity 16 8.93E-14 Molecular function

GO:0061629 RNA polymerase II-specific DNA-binding transcription 
factor binding

17 2.94E-12 Molecular function

GO:0005126 cytokine receptor binding 15 1.10E-11 Molecular function

GO:0140297 DNA-binding transcription factor binding 18 4.05E-11 Molecular function

GO:0048018 receptor ligand activity 18 6.73E-11 Molecular function

GO:0030546 signaling receptor activator activity 18 8.48E-11 Molecular function

GO:0004879 nuclear receptor activity 8 2.51E-10 Molecular function

GO:0098531 ligand-activated transcription factor activity 8 2.51E-10 Molecular function

GO:0019902 phosphatase binding 10 7.14E-08 Molecular function

GO:0001221 transcription coregulator binding 8 9.94E-08 Molecular function
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1 and 2 hydrogen bonds during the simulation (Fig. 9c). It 
indicates that hydrogen bonding plays a role in the binding 
of small molecules and proteins during kinetic simulation.

Based on the trajectories of molecular dynamics sim-
ulations, we calculated the binding energy using the 
MM-GBSA method, which can more accurately reflect 
the binding effect of small molecules and target pro-
teins. the binding energies of CXCL8/Isorhamnetin, 
CXCL8/Kaempferol, and CXCL8/Licochalcone_A were 
− 15.83 ± Negative values indicate that the molecule has 
a binding affinity to the target protein, and lower values 
indicate stronger binding. Our calculations indicate that 
CXCL8/Isorhamnetin, CXCL8/Kaempferol, and CXCL8/
Licochalcone_A have binding potential. By energy 
decomposition, we can see that the main contribution to 
the binding of licochalcone a, isorhamnetin, and kaemp-
ferol to CXCL8 can be van der Waals energy, followed by 
electrostatic energy and non-polar solvation free energy 
(Table  4). In conclusion, these results demonstrate the 
reliability of our molecular docking results and the bind-
ing stability of CXCL8 with licochalcone a, isorhamnetin, 
and kaempferol.

Gene set enrichment analysis
GSEA enrichment analysis can analyze the regulation of 
genes in the dataset. Molecular docking identified genes 
that bind strongly to core compounds, such as CXCL8, 

IL1B, and CCL2. we then subjected these genes to GSEA 
analysis in GSE15932 to find their effects in the gene set. 
the GSEA results showed that CXCL8, IL1B and CCL2 
affect Graft-versus-host disease, Legionellosis, Primary 
immunodeficiency, Primary bile acid biosynthesis, Pro-
tein export and Non-homologous end-joining signaling 
pathways (Fig. 10). These results suggest a regulatory role 
of these genes in diabetes, mainly related to immunity 
and inflammation.

Discussion
Diabetes not only increases the risk of cerebrovascu-
lar disease and stroke but also exacerbates neurode-
generative diseases, particularly AD [45]. Traditional 
Chinese medicine has gained international recognition 
over the course of thousands of years, with numerous 
prescriptions being utilized to treat a wide range of 
clinical conditions. In Traditional Chinese Medicine, 
SZRD is a classical prescription known for its seda-
tive and tranquilizing properties, primarily used in the 
treatment of conditions such as “liver and blood defi-
ciency, heat deficiency, and internal disorders" [46]. 
Diabetes is categorized as “depression” and “thirst” in 
Traditional Chinese Medicine and is believed to be pri-
marily related to yin and qi deficiency in the patient’s 
body, as well as emotional and willpower disorders. 
Therefore, clinical treatment should focus on reliev-
ing liver depression, nourishing yin and generating 

Table 3 KEGG analysis (top 15 signaling pathways with the smallest p-values)

ID Term Count P Value

hsa05418 Fluid shear stress and atherosclerosis 30 1.85E-31

hsa04933 AGE-RAGE signaling pathway in diabetic complications 27 3.72E-31

hsa05417 Lipid and atherosclerosis 31 8.25E-27

hsa05161 Hepatitis B 22 2.16E-18

hsa05212 Pancreatic cancer 17 3.40E-18

hsa04657 IL-17 signaling pathway 18 6.37E-18

hsa05167 Kaposi sarcoma-associated herpesvirus infection 23 7.40E-18

hsa05145 Toxoplasmosis 19 7.82E-18

hsa05163 Human cytomegalovirus infection 24 1.54E-17

hsa05142 Chagas disease 18 2.99E-17

hsa04668 TNF signaling pathway 18 2.38E-16

hsa05215 Prostate cancer 17 2.79E-16

hsa04931 Insulin resistance 17 1.85E-15

hsa05140 Leishmaniasis 15 3.45E-15

hsa05205 Proteoglycans in cancer 21 4.95E-15

hsa01522 Endocrine resistance 16 7.36E-15

hsa05225 Hepatocellular carcinoma 19 1.88E-14

hsa04659 Th17 cell differentiation 16 3.62E-14

hsa04066 HIF-1 signaling pathway 16 4.20E-14

hsa04932 Non-alcoholic fatty liver disease 18 6.21E-14
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fluid and tonifying qi and blood. Recent studies have 
shown that SZRD improves cognitive function in APP/
PS1 mice and reduces levels of IL-6, IL-1β, and TNF-α 
[9]. These findings indicate that SZRD may have thera-
peutic effects on Alzheimer’s with diabetes, although 
its mechanism of action remains unclear. Hence, we 

employed a combined approach of bioinformatics, net-
work pharmacology, and molecular docking to identify 
the active compounds and potential targets of SZRD in 
Alzheimer’s with diabetes.

We employed the principles of oral bioavailability (OB) 
and drug-likeness (DL) for active compound screening, 

Fig. 5 GO and KEGG enrichment analysis results. network plots between the top 10 pathways for each category in GO enrichment analysis BP (a), 
CC (b), and MF (c). d Bubble plots of GO enrichment analysis. e Network diagram of the top 10 pathways analyzed by KEGG enrichment. f Bubble 
plots of KEGG enrichment analysis
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Fig. 6 Distribution of intersecting genes in related pathways. a AGE-RAGE signaling pathway in diabetic complications, (b) Fluid shear stress 
and atherosclerosis signaling pathway. Red rectangles represent key targets
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and integrated them with disease targets to identify 97 
intersecting targets using the D-C-T-D approach. Among 
these, quercetin, kaempferol, licochalcone a, isorham-
netin, formononetin, and naringenin were identified as 
the main core compounds, which have also been dem-
onstrated to exhibit therapeutic effects in both diabetes 
and AD. Licochalcone a, a naturally occurring specific 
inhibitor of JNK (c-Jun N-terminal kinase), has been 
demonstrated to exhibit therapeutic effects in diabetic 
nephropathy [47]. Isorhamnetin, a regulator of the insu-
lin signaling pathway, has been shown to improve diabe-
tes by mitigating insulin resistance [48]. Formononetin, 
a naturally occurring isoflavone, acts as a non-classical 
agonist of PPARγ (peroxisome proliferator-activated 
receptor gamma), which not only treats Alzheimer’s with 
diabetes but also enhances fat thermogenesis to reduce 
obesity [49]. Naringenin has also been demonstrated to 
possess potent neuroprotective and antidiabetic effects 
[50]. Furthermore, these compounds highlight the thera-
peutic potential of SZRD in addressing cognitive impair-
ment associated with diabetes.

We retrieved 1977 DEGs for diabetes and 622 DEGs for 
AD from the GEO database. After intersecting the targets 
of complementary targets and drugs, a total of 97 targets 
were identified. Further, we performed MCC analysis on 
the PPI network to identify Hub targets including IL6, 

TNF, IL1B, CXCL8, IL10, CCL2, ICAM1, STAT3, and 
IL4. Low-grade inflammation, which plays a role in the 
development and progression of multiple diseases, has 
been associated with IL6, IL-1B, CXCL8, IL4, TNF, and 
IL10 in various diseases [51, 52]. CCL2 acts as a ligand for 
the C-C chemokine receptor CCR2, which is stimulated 
by inflammation [53]. Meta-analysis demonstrated that 
ICAM1, a cell adhesion molecule, is elevated in the circu-
latory system of diabetic patients, and its levels are dose-
dependently associated with the risk of diabetes [54]. 
STAT3 has been proposed as a potential link between 
inflammation and chronic disease [55]. We observed a 
strong correlation between these hub genes and inflam-
mation, which is a critical pathological feature of Alzhei-
mer’s with diabetes. These findings imply that SZRD may 
primarily exert an anti-inflammatory role in treating Alz-
heimer’s with diabetes at the genetic level.

GO enrichment analysis revealed that SZRD regulates 
Alzheimer’s with diabetes through biological processes 
such as response to nutrient levels, oxidative stress, and 
cellular response to chemical stress. Oxidative stress 
and inflammation play a role in the development of Alz-
heimer’s with diabetes. Our KEGG enrichment analy-
sis indicated that these targets were mainly enriched in 
pathways such as Fluid shear stress and atherosclerosis, 
AGE-RAGE signaling pathway in diabetic complications, 

Fig. 7 The molecular docking results of the first 6 potential compounds with 9 hub genes are scored in a heat map (unit: kcal/mol), with red 
representing high docking activation energy and blue representing low docking activation energy
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Fig. 8 Visualization of docking results of hub gene with potential compounds, licochalcone a (a), isorhamnetin (b), kaempferol (c), quercetin (d), 
and formononetin (e) generated with CXCL8 in 3D and 2D, with 3D results on the left and 2D results on the right
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Fig. 9 The molecular dynamics (MD) simulation of the CXCL8- licochalcone a complex, the CXCL8- isorhamnetin complex, 
and the CXCL8- kaempferol complex. a The RMSD plot of the complexes. b The RMSF plot of the complexes. c The number of hydrogen bonds 
in the complexes
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Lipid and atherosclerosis, IL-17 signaling pathway, and 
TNF signaling pathway. Previous studies have demon-
strated that Fluid shear stress and atherosclerosis, as well 
as the AGE-RAGE signaling pathway in diabetic com-
plications, play a regulatory role in diabetes [56] and are 
also closely related to inflammation and oxidation [57]. 
The KEGG network and target analysis revealed the pres-
ence of inflammatory factors and oxidative stress-related 
proteins involved in network regulation, along with the 
identification of PI3K/AKT and MAPK signaling path-
ways in the pathway map that could potentially modu-
late these factors and proteins. The PI3K/Akt signaling 
pathway is implicated in the modulation of cytokines and 
plays a crucial role in regulating insulin and cognitive 
function in AD through the reduction of phosphoryla-
tion levels of PI3K, AKT, and mTOR [58]. Previous stud-
ies have demonstrated the involvement of PI3K in the 
regulation of diabetic complications. Furthermore, PI3K/
AKT has been shown to play a significant role in diabetic 
cognitive impairment [59]. mitogen-activated protein 
kinase (MAPK) is a serine/threonine protein kinase that 
regulates multiple inflammatory responses [60], includ-
ing NLRP3 and NF-κB pathways. Studies have shown 
that RAGE can activate the P38 MAPK/NF-κB signal-
ing pathway, which is implicated in diabetic cognitive 
dysfunction [61]. Therefore, PI3K/AKT and MAPK may 
serve as crucial regulators in the pathways of fluid shear 
stress, atherosclerosis, and the AGE-RAGE signaling 
pathway in diabetic complications, potentially contribut-
ing to SZRD-mediated Alzheimer’s with diabetes.

Molecular docking was employed to evaluate the 
activity of active compounds (quercetin, kaempferol, 
licochalcone a, isorhamnetin, formononetin, and nar-
ingenin) with hub genes (IL6, TNF, IL1B, CXCL8, IL10, 
CCL2, ICAM1, STAT3, and IL4). The binding affinities 
were predominantly <-4.25  kcal/mol, indicating robust 
interactions between most compounds and hub genes, 
with kaempferol, licochalcone a, and isorhamnetin 

exhibiting the strongest docking activities with hub gene 
CXCL8. Subsequently, we conducted molecular dynam-
ics simulations to further investigate this, and the results 
further confirmed the strong binding stability of kaemp-
ferol, licochalcone a, and isorhamnetin with hub gene 
CXCL8. Lastly, we performed GSEA analysis on CXCL8, 
IL1B, and CCL2, three hub genes with significant dock-
ing activity, using the results of molecular docking. The 
GSEA analysis further demonstrated the pivotal roles of 
CXCL8, IL1B, and CCL2 in diabetes through immune 
and inflammatory mechanisms. In conclusion, our study 
elucidates the potential role of active compounds and 
hub genes of SZRD in the treatment of Alzheimer’s with 
diabetes.

Limitation
However, there are some limitations of the study in this 
paper. First, from the perspective of Traditional Chinese 
Medicine, suanzaoren is considered the core component 
of this formula. Most of the predicted compounds iden-
tified in our study belong to gancao, rather than suan-
zaoren, which raises concerns about the reliability of the 
prediction. Secondly, the active compounds of SZRD 
remain unidentified and could be compensated by addi-
tional research methods such as LC/MS, metabolomics, 
and pharmacokinetics. Finally, validation through ani-
mal and cellular experiments was not conducted due 
to constraints such as time limitations, which could be 
considered in future research. Our experiments mainly 
illustrate the preliminary therapeutic effect of SZRD on 
Alzheimer’s with diabetes, while our results predict the 
key role played by these active ingredients.

Conclusion
In summary, this study applied bioinformatics, net-
work pharmacology, molecular docking, and molecular 
dynamics simulation to predict the pharmacological 

Table 4 Binding free energies and energy components predicted by MM/GBSA (kcal/mol)

ΔEvdW: van der Waals energy

ΔEelec: electrostatic energy

ΔGGB: electrostatic contribution to solvation

ΔGSA: non-polar contribution to solvation

ΔGbind: binding free energy

System name CXCL8/Isorhamnetin CXCL8/Kaempferol CXCL8/Licochalcone_A

ΔEvdw -21.06 ±2.10 -19.95 ±1.58 -23.53±2.29

ΔEelec -11.99 ±1.14 -10.70 ±1.66 -2.77 ±2.08

ΔGGB 20.56±1.91 19.15±2.53 12.68±1.61

ΔGSA -3.33±0.23 -2.98±0.44 -3.30±0.31

ΔGbind -15.83±2.62 -14.49±2.62 -16.93±2.84
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Fig. 10 Enrichment of hub gene in GSE15932 by GSEA. a and b CXCL8, up (a), down (b). c and(d)CCL2, up (c), down (d). e and f IL1B, up (e), down (f)
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effects and molecular mechanisms of SZRD in Alzhei-
mer’s with diabetes. Licochalcone A, isorhamnetin, and 
kaempferol have the potential to serve as the primary 
active ingredients in SZRD treatment. The results of 
molecular dynamics simulations also suggest a strong 
association between the hub gene and Licochalcone 
A, isorhamnetin, and kaempferol. Our results pro-
vide a theoretical basis for subsequent experimental 
verification.
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