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Abstract 

Background RNA binding proteins (RBPs) have been implicated in oncogenesis and progression in various cancers. 
However, the potential value of RBPs as prognostic indicators and therapeutic targets in colorectal cancer (CRC) 
requires further investigation.

Methods Four thousand eighty two RBPs were collected from literature. The weighted gene co-expression net-
work analysis (WGCNA) was performed to identify prognosis-related RBP gene modules based on the data attained 
from the TCGA cohorts. LASSO algorithm was conducted to establish a prognostic risk model, and the validity of the 
proposed model was confirmed by an independent GEO dataset. Functional enrichment analysis was performed to 
reveal the potential biological functions and pathways of the signature and to estimate tumor immune infiltration. 
Potential therapeutic compounds were inferred utilizing CMap database. Expressions of hub genes were further veri-
fied through the Human Protein Atlas (HPA) database and RT-qPCR.

Results One thousand seven hundred thirty four RBPs were differently expressed in CRC samples and 4 gene 
modules remarkably linked to the prognosis were identified, based on which a 12-gene signature was established for 
prognosis prediction. Multivariate Cox analysis suggested this signature was an independent predicting factor of over-
all survival (P < 0.001; HR:3.682; CI:2.377–5.705) and ROC curves indicated it has an effective predictive performance 
(1-year AUC: 0.653; 3-year AUC:0.673; 5-year AUC: 0.777). GSEA indicated that high risk score was correlated with 
several cancer-related pathways, including cytokine-cytokine receptor cross talk, ECM receptor cross talk, HEDGE-
HOG signaling cascade and JAK/STAT signaling cascade. ssGSEA analysis exhibited a significant correlation between 
immune status and the risk signature. Noscapine and clofazimine were screened as potential drugs for CRC patients 
with high-risk scores. TDRD5 and GPC1 were identified as hub genes and their expression were validated in 15 pairs of 
surgically resected CRC tissues.

Conclusion Our research provides a depth insight of RBPs’ role in CRC and the proposed signature are helpful to the 
personalized treatment and prognostic judgement.
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(WGCNA)

†Lu Cao, Lili Duan, Rui Zhang and Wanli Yang contributed equally to this work 
as co-first authors.

*Correspondence:
Hong Liu
hongliufmmu@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41065-023-00274-z&domain=pdf
http://orcid.org/0000-0002-8276-2345


Page 2 of 19Cao et al. Hereditas          (2023) 160:10 

Introduction
Colorectal cancer (CRC) is the third most common 
malignancies, ranking the second in cancer mortal-
ity worldwide [1]. Although great progress has been 
achieved in diagnostic and therapeutic approaches, CRC 
patients suffered from poor prognosis.

RNA-binding proteins (RBPs) are a group of intrinsi-
cally pleiotropic proteins that interact with their targets 
RNA via RNA-binding domains (RBDs), forming ribonu-
cleoprotein complexes and further implicating in RNA 
metabolism and post-transcriptionally gene regulation. 
RBPs serve as crucial regulators of various cellular pro-
cesses, including cell transport, development, differen-
tiation, and metabolism. Mounting evidences exhibit 
that dysregulation of RBPs is critical for tumorigenesis 
and progression in colorectum. For instance, an RBP 
CELF1, which is highly expressed in numerous human 
malignant tumours, promotes cell migration, invasion, 
and chemoresistance in CRC [2].Another evolutionar-
ily conserved RBP LIN28B could modulate biogenesis of 
let-7 microRNAs, further promoting CRC growth and 
progression [3–6]. Previous research demonstrated that 
RBP RBM3 was upregulated in CRC and overexpression 
RBM3 enhanced stem-like properties and drug resistance 
of CRC [7, 8]. Interestingly, some RBPs have a dichoto-
mous role in CRC. For example, IMP1 has a critical role 
in modulation of cell cycle progress along with migration 
in CRC cells [9]. IMP1 was highly expressed in most CRC 
samples [10] and aberrant expression of IMP1 was linked 
to enhanced metastasis and worse prognosis [11, 12], 
whereas stromal IMP1 served as a tumour-suppressive 
factor in colon [13, 14]. Therefore, further investigation 
on RBPs may provide novel ideas for screening new diag-
nostic and therapeutic targets of CRC.

In the present study, we thoroughly reviewed another 
two studies which examined the prognostic significance 
of RBPs in CRC. Firstly, a 4-gene model (SMAD6, UPF3B, 
RP9 and NOL3) was constructed by Zheng Z et al. whose 
3-year AUC reached 0.645 and 5-year AUC reached 
0.672 [15]. Secondly, Xuehui F et al. established a 12-gene 
model (NOP14, MRPS23, MAK16, TDRD6, POP1, 
TDRD5, TDRD7, PPARGC1A, LIN28B, CELF4, LRRFIP2 
and MSI2), which significantly divided CRC patients 
into high- and low-risk groups in terms of OS (P < 0.001) 
[16]. Unfortunately, those two studies failed to fully col-
lect potential RBPs from different resources (1542 of 
Zheng Z’s and 1493 of Xuehui F’s). And lack the analy-
sis of RBDs which are essential for RBPs to perform their 
functions. In this study, a novel method named weighted 
gene co-expression network analysis (WGCNA) was 
used to identify the key prognostic genes in a co-regu-
lated gene network level instead of an individual gene 
level, which is more compliant with biology laws. And 

more comprehensive analyses including immune cell 
infiltration quantification, potential drugs prediction and 
in vitro experiments validation were also encompassed in 
this study. The detailed comparisons among these studies 
were shown in Table S1.

Herein, we utilized WGCNA to identify the prognosis-
correlated modules and hub genes. Next, we established 
a prognostic signature based on 12 RBP genes and vali-
dated it in an independent GEO cohort. GO and KEGG 
analyses were employed to reveal the underlying func-
tional mechanisms of RBPs in CRC. Gene set enrichment 
analysis (GSEA) was used to explore functions of this 
signature and single-sample gene set enrichment analysis 
(ssGSEA) was conducted to reveal its relationship with 
immune cell infiltration and functions. We also created 
a nomogram to estimate an individual’s survival chance 
through the integration of clinical characteristics and the 
proposed signature. Potential drugs were identified using 
CMap database. Finally, the mRNA and protein expres-
sion levels of hub genes were verified.

Materials and methods
Data acquisition
Based the research of Zhixing Wang in 2020, a list of 
4082 human RBP genes was comprehensively integrated 
from six sources: Gerstberger [17], SONAR [18], the 
Gene Ontology project, Poly(A)-binding protein [19], 
CARIC [20], and XRNAX [21]. The RNA sequencing 
(RNA-seq) data and the matching clinical profiles of 476 
CRC patients were obtained from TCGA data resource 
(https:// portal. gdc. cancer. gov/), containing 42 non-
tumour samples and 488 tumour samples. Meanwhile, a 
cohort of 122 CRC patients from the GEO data resource 
(https:// www. ncbi. nlm. nih. gov/ geo/) (GSE38832) was 
employed as an independent external test set. This cohort 
contained 122 tumour samples. The R software (version 
4.0.2) and package “limma” were used to normalize and 
process the data. The current research complies with 
TCGA and GEO policies and guidelines.

Expression and domain analysis of RBPs in CRC 
Firstly, the differently expressed RBPs between tumour 
and non-tumour tissue in the TCGA dataset were uncov-
ered with the cut-off of FDR < 0.05 and |logFC|>0.5 using 
the R “limma” package. Next, we extracted 1394 protein 
binding domains of the differently expressed RBPs from 
the Pfam [22] data resource (http:// pfam. xfam. org) using 
an online tool David [23] (V.6.8, https:// david. ncifc rf. 
gov/). RNA binding domains (RBDs) are the sites through 
which RBPs interreact with their target RNAs. Finally, on 
the basis of the RBDs information, RBPs were stratified 
into two families, namely the canonical subfamily with 
canonical RBDs (experimentally or structurally verified 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://pfam.xfam.org
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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to directly bind RNAs) and the non-canonical subfamily. 
The list of canonical RBDs was obtained from literature 
[24]. Enrichment analyses regarding these two subfami-
lies were conducted.

Weighted gene co‑expression network analysis
WGCNA is a systematic biology method for determin-
ing the association patterns among genes across differ-
ent samples. It can be used to identify highly covarying 
gene sets (modules) and to identify candidate biomarkers 
or therapeutic targets based on the association between 
modules and sample phenotypes [25]. This approach 
focuses on exploring associations between external traits 
and co-expression gene sets instead of individual genes, 
which is more comply with biological laws. It has been 
widely used in various cancer researches. In this study, 
the expression pattern of the 1734 differently expressed 
RBPs and their matching clinical features (age, gender, 
overall survival time, survival status, and stage) in the 
TCGA cohort were employed to create a co-expression 
network using the R “WGCNA” package (V.4.0.2). The 
WGCNA approach was performed as documented previ-
ously [25]. First, to remove outlier samples, a hierarchical 
clustering analysis of CRC tumour samples on the basis 
of the expression of RBPs was performed. After that, we 
screened the estimated soft threshold power (β) to ensure 
the construction of scale-free networks, which is more in 
line with the law of biology. Herein, β = 5 (Figure S1 scale 
free  R2 = 0.885) was employed. Considering the TOM-
based dissimilarity measure, average linkage hierarchi-
cal clustering with a min-Module size (gene group) of 20 
was carried out. Moreover, RBPs with similar expression 
modes were categorized into the same modules and simi-
lar modules were merged. Next, we calculated the mod-
ule eigengenes (MEs) and gene significance (GS). MEs 
exhibit the first principal component-linked module, 
whose value representing all genes in the module. GS was 
defined as the association of genes with traits and was 
employed to quantify the relationship of individual genes 
with the clinical traits of interest. Based on these two 
parameters, modules that are remarkably related with 
the OS time or tumour stage were uncovered as progno-
sis-related modules. The PPI network of the genes from 
these prognosis-related modules were constructed using 
the STRING website and the cut-off confidence was set 
as 0.9 (https:// string- db. org/ cgi/ input. pl, version 11.0) 
and Cytoscape software (Version 3.8.2).

Construction and validation of prognostic models based 
on RBPs
Univariate Cox regression analysis was adopted to deter-
mine the prognostic significance of RBPs from the mod-
ules identified by WGCNA, which was conducted in R 

using “survival” package. And based on LASSO [26, 27] 
Cox regression algorithm, RBPs with prognostic value 
were selected to build the risk prediction model using 
the package “glmnet” in R. The penalty parameter (λ) was 
determined as per the minimum partial likelihood devi-
ance criteria. The formula below was used to compute 
the risk score for individual: risk score= n

j=1coef j*xj , 
where  Coefj represents the coefficient, whereas  Xj indi-
cates the relative expression level of each RBPs. Next, 
we stratified the patients into 2 risk groups (high- and 
low-risk groups) according to the median risk score. 
To explore the distribution of different groups, we con-
ducted PCA via the “prcomp” tool of the “stats” R pack-
age. The Kaplan-Meier (KM) approach with a log-rank 
test was employed to evaluate differences between the 2 
risk groups in terms of overall survival, which was con-
ducted in R using “survminer” package. Furthermore, 
the predictive efficacy of this novel model was explored 
by considering the AUC of the ROC curve through the 
“survivalROC” package in R. The independent prognos-
tic prediction potential of the risk score was evaluated 
by Multivariate Cox analysis using “survival” package. 
Moreover, the relationship of the risk score with the clin-
icopathological parameters was examined. The mean 
risk score values of patients in different clinicopathologi-
cal groups were compared using “stat_compare_means” 
function in “ggpubr” package. And the method parame-
ter was set as “wilcox.test”. Finally, the prognostic predic-
tion models were validated in an independent GEO CRC 
cohort (GSE38832). The validation process was to repeat 
the above experiments in GSE38832.

Enrichment analyses
In this study, comprehensive enrichment analyses cov-
ering 4 aspects were conducted. First, the “clusterPro-
filer” R package was utilised to perform KEGG along 
with the GO enrichment analyses targeting the RBPs 
containing different RBDs (canonical RBDs or non-
canonical RBDs). Next, KEGG and GO analyses were 
also performed regarding distinct modules which were 
significantly correlated with prognosis identified by the 
WGCNA. Thirdly, to elucidate the mechanism underly-
ing our prognostic model, GSEA (V.4.1.0, http:// softw 
are. broad insti tute. org/ gsea/) was employed to assess 
BP, CC, MF and KEGG enrichment based on differently 
expressed genes between different risk groups predicted 
by our novel prognostic models (FDR < 0.001, |NES| > 2). 
Finally, emerging literature have demonstrated the rela-
tionship between RBPs and immune status. Therefore, we 
further used ssGSEA to quantify the enrichment scores 
of diverse immune cell subpopulations and related func-
tions or pathways. The infiltrating score of 16 immune 
cells and the activity of 13 immune-related functions 

https://string-db.org/cgi/input.pl
http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
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or pathways were calculated with ssGSEA in the “gsva” 
R package. And the NES scores of different risk groups 
were compared using Wilcoxon method.

Development of nomogram
As a robust tool to quantify individuals’ risk in a real 
clinical scenario by integrating multiple risk factors, a 
nomogram was applied [28–30]. After removing the 
cases without complete clinical information (447 patients 
reserved), risk score as well as the clinicopathological 
parameters (age, gender, stage and TMN) were integrated 
to establish a nomogram for estimation of one- and 
three-year OS possibility of individuals with CRC, using 
the R “survival” and “rms” packages. Moreover, calibra-
tion plots were employed to explore the congruency 
between the estimated and actual survival.

Identification of candidate drugs
We used the CMap [31] web data resource (https:// clue. 
io) to identify potential candidate drugs. CMap com-
prises a chemical genomics web data resource that con-
tains gene expression patterns from grown human cells 
treated with small biomolecules. It can be employed to 
determine small biomolecules, which revert a distinct 
gene expression trend. For the potential biomolecules 
identified by CMap, we examined their drug activ-
ity levels from all NCI60 experiments in the CellMiner 
website (https:// disco ver. nci. nih. gov/ cellm iner/ home. 
do) and conserved those who passed the quality control 
assessment.

External experiments verification of hub prognostic gene 
expression in final model
The UALCAN online tool (http:// ualcan. path. uab. edu/ 
index. html) and the Human Protein Atlas databased 
(https:// www. prote inatl as. org/) were used to validated 
the expression of 12 genes used in the final model at the 
transcriptional and translational level. And genetic alter-
ations for these 12 genes were explored with the cBiopor-
tal database (http:// www. cbiop ortal. org/).

Fifteen pairs of surgically resected CRC tissue speci-
mens were obtained from Xijing Hospital (Xian, Shanxi 
Province) and used to detect the mRNA expression levels 
of the 2 hub genes (TDRD5 and GPC1) identified by our 
PPI network. Total RNA was extracted from tissue with 
Trizol reagent (Invitrogen, USA) and cDNA was synthe-
sized by using PrimeScript RT reagent Kit (TaKaRa). The 
RT-PCR analysis was performed with the SYBR Green 
PCR Master Mix (TaKaRa) and the ABI StepOne Real-
Time PCR system. The mRNA expression levels were 
normalized to the expression of GAPDH. The primer 
sequences were TDRD5 forward: 5’-CAA CCC TAG ACC 
AGT CCT GT-3’; reverse: 5’-AGT GGA CCG ATA CCC 

AAG GA-3’; GPC1 forward: 5’- GAG GCT GGT GGC 
TGC TAT G-3’; reverse: 5’- GCA GGT GCT CAC CCG AGA 
T-3’; GAPDH forward: 5’- GAC AGT CAG CCG CAT CTT 
CT-3’; reverse: 5’- GCG CCC AAT ACG ACC AAA TC-3’. 
The relative expression of the target gene was calculated 
by  2−△△Ct method.

Statistical analysis
All statistical analyses (DEG analysis; univariate, mul-
tivariate, and Lasso-penalised Cox regression analyses; 
KM survival analyses; ROC curve analysis and Wilcoxon 
test were performed in the R software 4.0.2. P < 0.05 sig-
nified statistical significance, with all statistical analy-
ses being two sided. Specifically, “limma” package was 
employed to conduct DEG analysis and “survival” pack-
age was employed to conduct univariate and multivariate 
regression analyses. Lasso-penalised Cox regression anal-
ysis was conducted using “glmnet” package. KM curves 
were plotted using “survminer” package and was com-
pared using a log-rank test. Finally, ROC curve analysis 
was conducted using “survivalROC” package.

Results
The flow diagram of the study is displayed in Fig. 1. 479 
CRC patients from both TCGA-COAD and TCGA-
READ cohorts and 122 CRC patients from the GSE38832 
data set were included. The detailed clinical characteris-
tics of these participants are given in Table S2.

Non‑canonical RBPs play an indispensable role in CRC 
Different from previous studies, 4082 RBPs (including 
non-canonical RBPs) were obtained from six resources: 
Gerstberger, SONAR, the Gene Ontology project, 
Poly(A)-binding protein, CARIC, and XRNAX. We 
examined these genes in the TCGA cohort and found 
that 4001 RBPs had transcriptome data. Among these 
genes, nearly half of the RBPs (1734/4001, 43.4%) were 
expressed differentially in cancerous tissue in contrast 
with the non- cancerous tissue (FDR < 0.05, |logFC|>0.5) 
(Table S3). Using the David tool, we extracted RBD of 
the 1734 RBPs. Based on the RBDs, we classified the 
1734 RBPs into two categories, including 343 canonical 
and 1391 non-canonical RBPs. Canonical RBPs contain 
RBDs which have experimental evidence indicating that 
they have an RNA-binding function. As shown in Fig. 2A, 
these canonical RBDs mainly including zinc fingers (ZF), 
RNA recognition motif (RRM), Ribosomal protein, Heli-
case conserved C-terminal domain, DEAD/DEAH box 
helicase (DEAD), Calponin homology (CH) domain, K 
homology (KH) domain, PDZ domain, tryptophan-aspar-
tic acid 40 (WD40), LSM domain, etc. In non-canonical 
RBPs, 40 RBPs contain WD domain, G-beta repeat and 
31 RBPs contain protein kinase domain (Fig.  2B). But 

https://clue.io
https://clue.io
https://discover.nci.nih.gov/cellminer/home.do
https://discover.nci.nih.gov/cellminer/home.do
http://ualcan.path.uab.edu/index.html
http://ualcan.path.uab.edu/index.html
https://www.proteinatlas.org/
http://www.cbioportal.org/
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most of the non-canonical RBPs possess distinct func-
tional domains. Therefore, apart from canonical RBPs, 
non-canonical RBPs may play a different role in CRC. 
And we utilized “clusterProfiler” R package to perform 
KEGG along with the GO enrichment analyses regarding 
these two types of RBPs. Genes contains canonical RBDs 
were found to be enriched in numerous RNA-related bio-
logical processes, for example, RNA splicing and RNA 
catabolic process. (Fig.  2C). Canonical RBPs also found 
to be abundant in signalling cascades consisting of spli-
ceosome, ribosome and herpes simplex virus 1 infection 
(Fig. 2D). As for the RBPs contains non-canonical RBDs, 
they were also found to be enriched in several RNA-
related biological processes such as ncRNA metabolic 
process, ribonucleoprotein complex biogenesis along 
with ncRNA processing (Fig.  2E). The enriched signal-
ling pathways were ribosome biogenesis in eukaryotes, 

RNA transport, DNA replication and RNA polymerase 
(Fig.  2F). Interestingly, metabolism pathways regarding 
carbon, fatty acid and amnio acid were also found to be 
enriched regarding non-canonical RBPs.

The prognosis‑related RBP Gene co‑expression modules 
were identified by WGCNA
To further determine the most prognosis-associated 
RBP genes’ co-expression module in CRC, we employed 
the “WGCNA” package to conduct a gene co-expres-
sion network analysis. After clustering, no sample in 
TCGA was reached the cut-off height 20,000, therefore 
all 488 tumour samples were utilized in the subsequent 
analysis (Fig. 3A). A value of β = 5 was employed as the 
soft-thresholding power to ensure a scale-free network 
(Figure S1). Overall, 9 modules were uncovered, among 
which a grey module was automatedly categorised to 

Fig. 1 Flow diagram of the study
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Fig. 2 The most enriched RBDs of the 1734 RBPs in the TCGA CRC cohort and enrichment analyses of the RBPs containing different RBDs (canonical 
RBDs or non-canonical RBDs). A Canonical RBDs, (B) Non-canonical RBDs. C GO along with (D) KEGG analyses of canonical RBPs. E GO (F) along with 
KEGG analyses of non-canonical RBPs
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contain the unassigned genes (Fig.  3B). We also con-
ducted the combination between the similar modules. 
However, no similarity reaches the threshold and all 9 
distinct modules were reserved. Next, the correlation 
between different modules and clinical traits was ana-
lysed (Fig. 3C). Blue module, which contains 113 RBPs, 
was negatively linked to CRC patients’ OS time (cor 
= -0.11, P < 0.05). Furthermore, another 3 modules, 
including pink (33 RBPs), yellow (72 RBPs) and green 
(44 RBPs), were found to be correlated with tumour 
stage. The pink and yellow module were positively asso-
ciated with advanced stage, whereas green module was 
negatively correlated with advanced stage. Because 
CRC patients with advanced stages usually have a 
worse prognosis, these 3 modules were also preserved 
as prognosis-linked modules. Therefore, a total of 4 
modules and 262 RBPs were identified for subsequent 
analysis (Table S4). Scatter plots of the 4 key modules 
were also shown in Figure S2 to depict the relationship 
between the gene significance and the gene correlation 
of their corresponding module.

Construction and validation of the prognostic signature
Among the 262 genes of the blue, pink, yellow and green 
modules, we identified 34 significantly prognosis-linked 
genes via Univariate Cox regression in TCGA cohort 
(Fig.  4A). The heatmap of these 34 RBPs was shown in 
Fig.  4B. A predictive gene signature consisting of 12 
RBPs was created with the Lasso Cox regression model 
(Fig. 4C-D). Among the 12 RBPs, 8 came from the blue 
module, which is correlated with OS time. As for the 
other 4 RBPs, 2 came from module yellow, 1 came from 
module pink, and 1 came from module green. These indi-
cated the blue module is the key module for prognosis 
prediction. The detailed genes in the blue module can be 
seen in Table S4.

Then, the risk score of each patient in the TCGA cohort 
was calculated based on the formula blow: risk score= 
(0.204017717772084× expression value of TDRD5) + 
(0.0651256443619593× expression value of SLFN11) 
+ (0.0680380282919894× expression value of ERFE) + 
(0.00191741362719572× expression value of LAMA2) 
+ (0.0779271500782849 × expression value of APOB-
EC3D) + (-0.024608911983806× expression value of 

Fig. 3 WGCNA analysis of the TCGA CRC cohort. A Sample clustering and the correlation with the clinical parameter. B Gene clustering and the 
different co-expressed modules identified by the WGCNA analysis. C Correlation between the nine identified co-expression modules and the 
samples’ clinical trats (OS: overall survival time)
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CAPN13) + (0.00588789395263925× expression value 
of APOBEC3C) + (-0.0177344830750462× expression 
value of GSR) + (0. 0257676876812225× expression 
value of PLIN4) + (0. 09401945277203× expression value 
of SLC9A7) + (0. 00298890481343992× expression value 
of FKBP10) + (0. 016412586214428× expression value 
of GPC1). A total of 447 patients were categorized into 
two group on the basis of the median risk score (0.739, 
Fig.  5D). Kaplan-Meier curves indicated that high-risk 
patients exhibited worse survival (Fig.  5A), which can 
also be seen in Fig. 5E. The ROC curves of the predictive 
signature are shown in Fig. 5B with a 1-year AUC 0.653, 
3-year AUC 0.673, and 5-year AUC 0.777. The PCA dem-
onstrated distribution of the patients in the distinct risk 
groups in two directions (Fig. 5C).

Univariate Cox analysis suggested that the risk score 
was significantly associated with OS (Fig. 6A, HR = 4.990, 
p < 0.001), and it was identified as an independent prog-
nostic risk factor by multivariate Cox analysis (Fig.  6B, 
HR = 3.682, p < 0.001). In addition, the risk score was also 
linked to several clinical parameters such as stage, T, M 

and N (Fig.  6D-I), which further verified the efficacy of 
our predictive model.

Next, the model was further verified in an independ-
ent CRC dataset GSE38832, which contains 122 CRC 
patients’ tumour samples. The risk scores of every patient 
were computed using the same formula above and the 
122 patients were classified using the median risk score 
(Fig. 7D). The results were generally consistent with those 
found in TCGA cohort. Low risk group were found to 
have a better chance to live longer (Fig. 7A, E). The ROC 
curves of the predictive signature were shown in Fig. 7B 
with a 1-year AUC 0.651, 3-year AUC 0.678, and 5-year 
AUC 0.628. The PCA demonstrated patients with dif-
ferent risk scores were well distributed in two directions 
(Fig. 7C). The risk score was also found to be remarkably 
consistent with tumour stage in GEO cohort (Figure S3).

A personalised nomogram
A nomogram was constructed to estimate the prob-
ability of 1- and 3-year OS by incorporating the 12-RBP 
gene signatures and other clinicopathological variables, 

Fig. 4 Univariate Cox and Lasso analysis. A forest of the 34 identified prognostic RBPs. B heatmap of the 34 RBPs between normal and cancer 
samples. C LASSO coefficient profiles of the expression of 34 candidate RBPs. D Selection of the penalty parameter (λ) in the LASSO model via 
cross-validation
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including age, stage, sex and TNM stages. As shown in 
Fig. 8A, we assigned points to each factor according to its 
risk contribution to survival. The calibration curves con-
firmed that actual and estimated survival matched well, 
especially for 1-year survival (Fig. 8B).

Enrichment analyses
Firstly, 4 modules correlated with prognosis were iden-
tified by WGCNA analysis. The PPI network of these 4 
modules was shown in Fig. 9A (cut-off confidence = 0.9), 
the genes used in our final prognostic module were iden-
tified using blue circle. TDRD5 and GPC1 were screened 
as hub genes, which were upregulated in the cancerous 
tissue. GO and KEGG analysis for these 4 modules were 
conducted using the “clusterProfiler” R package (Fig. 9B).

GO analysis revealed that blue module was found to 
be mainly abundant in response to virus and response to 
type I interferon (IFN-I) biological processes. The pink 
module was found to be enriched in several biological 
processes, such as NADH regeneration and canonical 
glycolysis. The yellow module was found to be abun-
dant in biological processes consisting of ribonucleo-
protein complex biogenesis, RNA splicing and RNA 
phosphodiester bond hydrolysis. The green module could 

be categorized into some essential biological processes, 
including nuclear division, organelle fission and chromo-
some segregation (Fig. 9B).

KEGG analysis revealed that blue module was mainly 
associated with PPAR signalling pathway, proteogly-
cans in cancer and fatty acid metabolism. Pink module 
was found to be mainly enriched in Glycolysis / Glu-
coneogenesis, carbon metabolism, RNA degradation 
and mismatch repair. Yellow module was mainly linked 
to beta-alanine metabolism and histidine metabolism. 
Green module was found to be mainly enriched in cell 
cycle, oocyte meiosis as well as p53 signalling pathway 
(Fig. 9B).

Gene set enrichment analysis (GSEA) was performed 
to obtain a more in-depth insight into biological roles 
of the prediction signature. Figure  10  A indicated that 
genes upregulated in the high-risk group were enriched 
in several essential biological processes such as artery 
morphogenesis, development of muscle tissue and posi-
tive modulation of proliferation of epithelial cells; cel-
lular components such as cell-cell junction and collagen 
containing extracellular matrix; molecular functions 
such as amyloid beta binding, extracellular matrix struc-
tural component, growth factor binding, integrin binding 

Fig. 5 Construction of the prognostic model in the TCGA cohort. A Survival analysis of the different risk groups. B Time ROC curve of the prognostic 
model. C PCA test of the distribution of the two risk groups. D the distribution along with the median value of the risk scores in TCGA data set. E the 
distributions of OS status, OS, as well as the risk score in TCGA data set
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Fig. 6 Cox analysis integrating risk score and other clinical parameters and the heatmap of the 12 genes used in our predictive model and 
correlation between the risk score and clinical parameters in TCGA cohort. A Univariate Cox results. B Multivariate Cox results. C the heatmap of the 
12 genes used in our predictive model. D-I correlation between the risk score and clinical parameters, the clinical parameters from D to I were stage, 
age, gender, T, M and N, respectively
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and SH3 domain binding. Figure  10B shows a few can-
cer-linked pathways were enriched in high-risk group, 
including cytokine-cytokine receptor interaction, ECM 
receptor interaction, HEDGEHOG signalling pathway 
and JAK/STAT signalling pathway. Finally, ssGSEA analy-
sis revealed the significant differences in the immune 
scores between the high- and low-risk groups. (Fig. 10C-
D). Immune cells including aDCs, B cells, DCs, iDCs, 
Macrophages, Mast cells, Neutrophils, pDCs, T helper 
cells, Tfh, Th1 cells, TIL and Treg have a higher infiltra-
tion level in the high-risk group. As for the immune-
related functions, all of them except for cytolytic activity 
and MHC class I scored higher on the high-risk group.

Noscapine and clofazimine were identified as potential 
drugs by CMap
We first identified 1021 DEGs (135 downregulated, 886 
upregulated) between the high- and low-risk groups 
using “limma” package in R (Table S5, FDR < 0.05, 
|logFC|>0.5). Using these DEGs as drug targets in CRC, 
we explored the CMap database to identify small com-
pounds as potential drugs. Table 1 listed the 13 most sig-
nificant small molecule drugs with potential therapeutic 
effect on reversing the CRC high-risk gene expression 

pattern revealed by our signature (cut-off score < -80). 
The detailed chemical structures of these compounds 
were indicated in Figure S4. Next, drug activity levels 
were analysed using the CellMiner web data resource. 
Among the thirteen candidate drugs, only four (noscap-
ine, orantinib, androstanol and clofazimine) had infor-
mation in the CellMiner web data resource. The Z scores 
of the drug activities among the NCI60 cell lines were 
indicated in Figure S5, and only the drugs with Z scores 
in the range of 1.2 were mentioned. Noscapine and clo-
fazimine were sensitive in most CRC cells, which were 
screened as potential drugs for high-risk patients.

External validation of the prognostic genes
The UALCAN online tool was explored to verified the 
mRNA expression levels of the 12 genes used in the pre-
diction model. The results were found to be consistent 
with our DEGs analysis (Figure S6). Then, the protein 
expression levels were validated using The Human Pro-
tein Atlas. Figure 11 A showed that SLC9A7, FKBP10 and 
GPC1 were overexpressed in CRC tumour tissue com-
pared with normal tissue, whereas APOBEC3C, APOB-
EC3D, CAPN13 and GSR showed the opposite trend. As 
for the other 5 genes in the prognostic model, protein 

Fig. 7 Validation of the prognostic model in the GEO cohort. A Survival analysis of the different risk group. B Time ROC curve of the prognostic 
model. C PCA test of the distribution of the two risk groups. D the distribution along with the median value of the risk scores in GEO data set. E the 
distributions of OS status, OS, as well as the risk score in GEO data set
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expression of ERFE was not found and other 4 genes 
show no discrepancy in protein expression. In addi-
tion, genetic alterations of the 12 prognostic genes were 
shown in Fig.  11C. LAMA2, GSR, PLIN4 and TDRD5 
showed the most frequent alterations. Finally, 15 pairs of 
CRC samples were collected to validate mRNA expres-
sion of the two hub genes (TDRD5 and GPC1) identified 
by the PPI network in Fig. 9A. Our results showed that 
TDRD5 and GPC1 were overexpressed in CRC tissue 
(Fig. 11B). The overexpression of the TDRD5 may attrib-
ute to the abnormal genetic amplification (Fig.  11C). In 
addition, the results of the Cox analysis indicated that the 
upregulation of TDRD5 and GPC1 was linked with poor 
overall survival of CRC patients (Fig. 4A.) These results 
indicated that TDRD5 and GPC1 may serve as potential 
prognostic biomarkers for CRC patients.

Discussion
Although diverse genetic drivers and distinct prognostic 
factors have been broadly explored, patients with CRC 
remains poor survival. Recent studies have demonstrated 
that dysregulation of RBPs was significantly correlated 
to malignant progression in CRC [32]. Hence, this study 
aims to investigate RBPs’ prognostic value in CRC and 
propose a novel prediction signature.

Firstly, compared with the other researches that only 
explored RBPs from traditional sources, our study inte-
grated 4082 RBPs from six resources and investigated 
their functions based on RBDs. Differently expressed 
RBPs were categorized into two types based on the RBDs 
they contained (canonical or non-canonical RBPs). We 
demonstrated that those two types of RBPs could mod-
ulate the progress of CRC via different mechanisms 
through enrichment analysis. Canonical RBPs primar-
ily participated in RNA splicing, catabolic or metabolic 
processes, degradation, transportation, and ribosome-
related functions. As for non-canonical RBPs, they were 
associated with several cellular processes, including RNA 
transport, cell cycle, DNA replication and so on. Non-
canonical RBPs were also linked to cell metabolism, such 
as carbon metabolism, fatty acid metabolism and pyru-
vate metabolism. In the 12-gene signature we proposed, 
only 2 genes (TDRD5 and FKBP10) have canonical RBDs, 
indicating that no-canonical RBPs play an indispensable 
role in CRC prognosis and larger studies covering all RBP 
sources rather than canonical ones are needed.

Next, 9 gene co-expression models and the relation-
ships between them and clinical characteristics were 
determined using WGCNA. Altogether, a total of 4 prog-
nosis-related modules containing 262 RBP genes were 

Fig. 8 The nomogram to anticipate prognostic probabilities in TCGA-CRC. A The nomogram for predicting the OS of TCGA-CRC cohort. B-D The 
calibration plots used for predicting one-year (B), three-year (C), and five-year survival D. The x- and y-axes represent predicted nomogram and 
actual survival, respectively, and the solid line designated the estimated nomogram
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Fig. 9 PPI network and enrichment analysis of the 4 prognosis-linked modules identified by WGCNA analysis. A PPI network. B GO and KEGG 
enrichment analysis. (Blue circle indicated the genes used in our prognostic model. Red circle exhibits upregulated genes in the cancerous tissue 
whereas green circle denotes the opposite.)
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Fig. 10 GSEA and ssGSEA analysis of the 12-gene signature between high and low risk groups. A GO analysis and (B) KEGG analysis based 
on differently expressed genes between 2 risk groups stratified by the prognostic model. The comparison of the ssGSEA NES scores of (C)13 
immune-related functions and (D) 16 immune cells between different risk groups in the TCGA cohort were displayed in boxplots. (P values were 
showed as: ns, not significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001.)
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identified. As a novel method, WGCNA can identify the 
key prognostic genes in a co-regulated gene network level 
instead of an individual gene level, which is more compli-
ant with biology laws. This will make it easier to under-
stand the mechanism underlying the prediction model 
and find potential therapeutic targets. By measuring 
the levels of these RBPs, it is perspective to predict the 
prognosis of individuals with CRC. Therefore, Univariate 
Cox analysis as well as Lasso algorithm were performed 
to construct an OS prediction model containing 12 RBP 
genes (TDRD5, SLFN11, ERFE, LAMA2, APOBEC3D, 
APOBEC3C, CAPN13, GSR, PLIN4, SLC9A7, FKBP10 
and GPC1). The calculated risk score significantly strati-
fied TCGA patient outcomes (P < 0.05). Both ROC curves 
and AUCs validated the efficacy of the prognostic predic-
tion model, which was further verified in an independent 
GEO dataset (GSE38832). This signature may optimize 
the individualized survival prediction of CRC patients.

Among these 12 RBP genes used in our model, TDRD5 
and GPC1 were uncovered as hub genes by the PPI net-
work as shown in Fig.  9A. Canonical RBP TDRD5 is a 
member of the Tudor Domain Containing family which 
encode a group of conserved proteins involved in the 
spermiogenesis [33]. Mounting evidence has demon-
strated that methylated TDRDs can take part in RNA 
metabolism, alternative splicing, and small RNA path-
ways [34, 35]. It was reported that hepatocellular carci-
noma patients with high expression of TDRD5 suffered 
poor survival [36]. A previous study conducted by Xue-
hui Fan et  al. also suggested elevated expression of 
TDRD5 was a risk factor for CRC patients [16]. Another 
study indicated that mutations and intratumorally 

heterogeneity of TDRD genes affected the tumorigenesis 
in microsatellite instability CRC [37]. In our research, 
TDRD5 was remarkably upregulated in tumour samples 
and was identified as a prognostic factor for CRC patients 
(P < 0.001, HR = 1.431, CI:1.173–1.746)). As for GPC1, it 
plays an indispensable role in the control of cell division 
along with growth modulation. Previous studies revealed 
that the increased plasma GPC1 + exosomes as well as 
decreased miR-96-5p and miR-149 were biomarkers for 
the diagnosis of CRC and a potential therapy target espe-
cially for stage III CRC [38, 39]. Literature also identified 
GPC1 as an independent risk factor in pancreatic ductal 
adenocarcinoma patients’ prognosis [40]. In our study, 
GPC1 was remarkably upregulated in tumour samples 
and was screened as a risk factor for CRC patients’ OS 
(P = 0.003, HR = 1.043, CI:1.014–1.073). The expression 
of these two hub genes (TDRD and GPC1) were also 
validated in 15 CRC resected samples. These 2 genes 
both came from the blue module, which was negatively 
associated with CRC patients’ OS. Further researches on 
the role of TDRD5 and GPC1 in CRC progression are 
needed.

Although it is well established that RBPs were widely 
involved in regulating CRC biological behaviours, the 
underlying mechanism remains elusive and needs fur-
ther investigation. KEGG analysis implied that the 
prognosis-related blue module (Table S4) identified by 
WGCNA analysis was remarkedly correlated to PPAR 
signalling pathway and fatty acid metabolism. Of note, 
recent study demonstrated that RBP S100A4 promoted 
M2-like polarization of tumour-associated macrophages 
via PPAR-γ-dependent fatty acid oxidation, indicating the 

Table 1 Potential drugs identified by CMap database

Name Score Target MOA (mechanism of action)

isoliquiritigenin -96.41 AKR1B1, HRH2, SIRT1 Guanylate cyclase activator

beta-CCP -95.98 GABRA1, GABRG2, IDO1 Indoleamine 2,3-dioxygenase inhibitor

piperacillin -91.66 Bacterial cell wall synthesis inhibitor

memantine -87.22 GRIN1, CHRFAM7A, CYP2E1, DRD2, GRIN2A, GRIN2B, GRIN3A, 
HTR3A

Glutamate receptor antagonist

noscapine -86.38 BDKRB2, SIGMAR1 Bradykinin receptor antagonist, Tubulin inhibitor

huperzine-a -86.28 ACHE Acetylcholinesterase inhibitor

orantinib -85.89 PDGFRB, AURKA, AURKB, KDR, EGFR, FGFR1, FGFR2, PDGFRA, 
TBK1

FGFR inhibitor, VEGFR inhibitor, PDGFR receptor inhibitor

androstenol -85.18 NR1I3 GABA receptor modulator

taurodeoxycholic-acid -84.95 Bile acid

eicosatetraynoic-acid -83.34 ALOX12, PPARA, PPARG, PTGS1 Cyclooxygenase inhibitor, Lipoxygenase inhibitor

clofazimine -82.31 GK0582 inhibitor

norepinephrine -82 ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRA2B, ADRA2C, 
ADRB1, ADRB3, ADRB2, DRD1, DRD5, PAH, SLC18A1, SLC18A2

Adrenergic receptor agonist

vinburnine -80.09 CHRM1, CHRM2, CHRM3, CHRM4 Adrenergic receptor antagonist
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above pathways may be involved in RBP-mediated CRC 
progression [41]. Further researches on the blue module 
are needed. What’s more, our GSEA results suggested 
that several cancer-linked pathways were enriched in 
high-risk group predicted by our signature (FDR < 0.001, 
|NES| > 2), including Hedgehog signalling pathway and 

JAK/STAT signalling pathway. Previous study reported 
that enhanced RBP TET1 expression could sensitize pan-
creatic ductal adenocarcinoma cells to 5FU and gemcit-
abine through inhibiting the CHL1-related Hedgehog 
signalling pathway [42]. As for JAK/STAT signaling 
pathway, recent research demonstrated that RBP CPEB3 

Fig. 11 Protein, mRNA expression and genetic alterations of the model genes. A Human Protein Atlas database representative protein levels, (B) 
mRNA expression levels of TDRD5 and GPC1 (15 pairs of tissue), (C) genomics genetic alterations in CRC using cBioportal
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could suppress proliferation and migration of CRC cells 
via binding to 3’UTR of JAK1 mRNA and further inhib-
iting JAK/STAT pathways [43]. These evidences indi-
cated that 12-RBP gene signature may be implicated in 
the carcinogenesis of CRC through affecting these sign-
aling pathways, thus contributing to a worse survival 
in CRC patients. To further explore potential mecha-
nisms of the proposed signature, ssGSEA analysis was 
conducted. Interestingly, significant correlation was 
observed between risk score and ssGSEA NES score for 
tumour infiltrated immune cells (TIICs) and immune 
function. To our best knowledge, there are inconsistent 
results in various experiments regarding the correlation 
of TIICs and the prognosis of CRC individuals [44, 45], 
which can be attributed to various reasons, for example, 
different TIICs types, cancer stages, complexed tumour 
microenvironment (TME) and various cytokines released 
by tumour cells or TME cells [44]. In our result, high 
TIICs infiltration level was found in high-risk group 
(P < 0.05). These data suggest that high-risk patients may 
have higher probability to be benefit from immune ther-
apy and our proposed signature has potential usage in 
evaluation of immune therapy efficacy in CRC patients. 
Furthermore, a literature showed a long noncoding RNA 
VPS9D1-AS1 can amplify intratumoral TGF-β signalling 
and promote tumour cell escape from CD8 + T cell kill-
ing in colorectal cancer by binding a ribosome protein 
S3 (RPS3) [46], which is a canonical RBP and was over-
expressed in CRC tumour samples validated by our DEG 
analysis (logFC = 0.51, FDR = 4.88E-11). Another paper 
showed RBP UBE2I may be a diagnostic and surveillance 
predictive signature for colon cancer and had potential 
significance of immune infiltrates and promoter meth-
ylation [47]. Another research also suggested that RBP 
YBX3 was associated with tumour immune evasion via 
different mechanisms involving T-cell exclusion in differ-
ent cancer types (especially in colon cancer) and by the 
tumour infiltration of immune cells. And long noncod-
ing RNA HEIH can inhibit this phenomenon by binding 
with YBX3 [48]. The above literatures suggested some 
regulatory genes can influence immune cell infiltration 
and immune cell functions by binding with specific RBPs. 
Following experiments are needed to determine the rela-
tionship between our risk score and immune therapy 
efficacy.

Lastly, noscapine and clofazimine as potential active 
drugs for high-risk patients were identified. Noscapine, 
usually used as a cough suppressant, is a phthalide iso-
quinoline alkaloid derived from opium. Recently study 
showed that noscapine could trigger apoptosis in colon 
cancer cells through the mitochondrial pathways [49]. 
Another study suggested down-regulation of exogenous 
CDH17 can enhance apoptosis-triggering impacts of 

noscapine on CRC [50]. Clofazimine, an anti-mycobacte-
rium drug, could exert antitumor effects through inhib-
iting Wnt signalling in various cancers, including CRC 
[51]. A nanoparticulate co-formulation of paclitaxel and 
clofazimine has been investigated in CRC cells, and was 
found to be statistically superior to Taxol [52]. Therefore, 
noscapine and clofazimine may be identified as safe and 
effective chemotherapeutic agents for the treatment of 
human CRC, especially for those at high-risk predicted 
by our model.

Conclusion
In summary, we profiled the mRNA expression of 
4082 RBP genes in TCGA CRC cohort. We conducted 
WGCNA analysis to screen the most prognosis-related 
modules and RBP genes and further proposed an OS pre-
diction model based on 12 RBP genes (TDRD5, SLFN11, 
ERFE, LAMA2, APOBEC3D, APOBEC3C, CAPN13, 
GSR, PLIN4, SLC9A7, FKBP10 and GPC1), which was 
determined and validated as an independent prognostic 
factor for CRC patients. We also constructed a nomo-
gram with good performance in estimating the OS of 
CRC patients. Finally, two potential drugs were identi-
fied. In-depth studies of these hub genes and potential 
drugs may contribute to personalised therapy for CRC in 
the clinical setting.
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